Method of lines and direct discretization, a comparison for linear advection:
Abstract: "There are two standard ways to derive numerical algorithms for multi-dimensional flow problems [12]: either by the method of lines approach, where space and time discretization are considered separately, or with dimensional splitting, starting from a fully discrete one-dimensional me...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1993
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
1993,14 |
Schlagworte: | |
Zusammenfassung: | Abstract: "There are two standard ways to derive numerical algorithms for multi-dimensional flow problems [12]: either by the method of lines approach, where space and time discretization are considered separately, or with dimensional splitting, starting from a fully discrete one-dimensional method. In this paper two such related schemes are compared for linear advection. The fully discrete one-dimensional scheme is obtained by direct discretization in space and time, using a four-point upwind-biased stencil. Spatial discretization for the method of lines is considered with the same stencil and same order. Both methods are considered with flux limiting to avoid oscillations and negative values in the solutions The schemes are applied to a number of test problems, on uniform grids and with local uniform grid refinement, to compare the accuracy and computational efficiency. |
Beschreibung: | 22 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010187997 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 950518s1993 |||| 00||| engod | ||
035 | |a (OCoLC)31499766 | ||
035 | |a (DE-599)BVBBV010187997 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Hundsdorfer, Willem |e Verfasser |4 aut | |
245 | 1 | 0 | |a Method of lines and direct discretization, a comparison for linear advection |c W. H. Hundsdorfer ; R. A. Trompert |
264 | 1 | |a Amsterdam |c 1993 | |
300 | |a 22 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |v 1993,14 | |
520 | 3 | |a Abstract: "There are two standard ways to derive numerical algorithms for multi-dimensional flow problems [12]: either by the method of lines approach, where space and time discretization are considered separately, or with dimensional splitting, starting from a fully discrete one-dimensional method. In this paper two such related schemes are compared for linear advection. The fully discrete one-dimensional scheme is obtained by direct discretization in space and time, using a four-point upwind-biased stencil. Spatial discretization for the method of lines is considered with the same stencil and same order. Both methods are considered with flux limiting to avoid oscillations and negative values in the solutions | |
520 | 3 | |a The schemes are applied to a number of test problems, on uniform grids and with local uniform grid refinement, to compare the accuracy and computational efficiency. | |
650 | 4 | |a Differential equations, Partial | |
700 | 1 | |a Trompert, Ron A. |e Verfasser |4 aut | |
810 | 2 | |a Afdeling Numerieke Wiskunde: Report NM |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 1993,14 |w (DE-604)BV010177152 |9 1993,14 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006768564 |
Datensatz im Suchindex
_version_ | 1804124589356220416 |
---|---|
any_adam_object | |
author | Hundsdorfer, Willem Trompert, Ron A. |
author_facet | Hundsdorfer, Willem Trompert, Ron A. |
author_role | aut aut |
author_sort | Hundsdorfer, Willem |
author_variant | w h wh r a t ra rat |
building | Verbundindex |
bvnumber | BV010187997 |
ctrlnum | (OCoLC)31499766 (DE-599)BVBBV010187997 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01967nam a2200313 cb4500</leader><controlfield tag="001">BV010187997</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950518s1993 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)31499766</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010187997</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hundsdorfer, Willem</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Method of lines and direct discretization, a comparison for linear advection</subfield><subfield code="c">W. H. Hundsdorfer ; R. A. Trompert</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">22 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1993,14</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "There are two standard ways to derive numerical algorithms for multi-dimensional flow problems [12]: either by the method of lines approach, where space and time discretization are considered separately, or with dimensional splitting, starting from a fully discrete one-dimensional method. In this paper two such related schemes are compared for linear advection. The fully discrete one-dimensional scheme is obtained by direct discretization in space and time, using a four-point upwind-biased stencil. Spatial discretization for the method of lines is considered with the same stencil and same order. Both methods are considered with flux limiting to avoid oscillations and negative values in the solutions</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">The schemes are applied to a number of test problems, on uniform grids and with local uniform grid refinement, to compare the accuracy and computational efficiency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trompert, Ron A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">1993,14</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1993,14</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006768564</subfield></datafield></record></collection> |
id | DE-604.BV010187997 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:48:04Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006768564 |
oclc_num | 31499766 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 22 S. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |
spelling | Hundsdorfer, Willem Verfasser aut Method of lines and direct discretization, a comparison for linear advection W. H. Hundsdorfer ; R. A. Trompert Amsterdam 1993 22 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1993,14 Abstract: "There are two standard ways to derive numerical algorithms for multi-dimensional flow problems [12]: either by the method of lines approach, where space and time discretization are considered separately, or with dimensional splitting, starting from a fully discrete one-dimensional method. In this paper two such related schemes are compared for linear advection. The fully discrete one-dimensional scheme is obtained by direct discretization in space and time, using a four-point upwind-biased stencil. Spatial discretization for the method of lines is considered with the same stencil and same order. Both methods are considered with flux limiting to avoid oscillations and negative values in the solutions The schemes are applied to a number of test problems, on uniform grids and with local uniform grid refinement, to compare the accuracy and computational efficiency. Differential equations, Partial Trompert, Ron A. Verfasser aut Afdeling Numerieke Wiskunde: Report NM Centrum voor Wiskunde en Informatica <Amsterdam> 1993,14 (DE-604)BV010177152 1993,14 |
spellingShingle | Hundsdorfer, Willem Trompert, Ron A. Method of lines and direct discretization, a comparison for linear advection Differential equations, Partial |
title | Method of lines and direct discretization, a comparison for linear advection |
title_auth | Method of lines and direct discretization, a comparison for linear advection |
title_exact_search | Method of lines and direct discretization, a comparison for linear advection |
title_full | Method of lines and direct discretization, a comparison for linear advection W. H. Hundsdorfer ; R. A. Trompert |
title_fullStr | Method of lines and direct discretization, a comparison for linear advection W. H. Hundsdorfer ; R. A. Trompert |
title_full_unstemmed | Method of lines and direct discretization, a comparison for linear advection W. H. Hundsdorfer ; R. A. Trompert |
title_short | Method of lines and direct discretization, a comparison for linear advection |
title_sort | method of lines and direct discretization a comparison for linear advection |
topic | Differential equations, Partial |
topic_facet | Differential equations, Partial |
volume_link | (DE-604)BV010177152 |
work_keys_str_mv | AT hundsdorferwillem methodoflinesanddirectdiscretizationacomparisonforlinearadvection AT trompertrona methodoflinesanddirectdiscretizationacomparisonforlinearadvection |