Preconditioning in parallel Runge-Kutta methods for stiff initial value problems:
Abstract: "From a theoretical point of view, collocation-type Runge-Kutta methods of collocation type belong to the most attractive step- by-step methods for integrating stiff problems. These methods combine excellent stability features with the property of superconvergence at the step points....
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1993,10
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
1993,10 |
Schlagworte: | |
Zusammenfassung: | Abstract: "From a theoretical point of view, collocation-type Runge-Kutta methods of collocation type belong to the most attractive step- by-step methods for integrating stiff problems. These methods combine excellent stability features with the property of superconvergence at the step points. Like the IVP itself, they only need the given initial value without requiring additional starting values, and therefore are a natural discretization of the initial-value problem. On the other hand, from a practical point of view, these methods have the drawback of requiring in each step the solution of a system of equations of dimension sd, s and d being the number of stages and the dimension of the initial-value problem, respectively. In contrast, linear multistep methods, the main competitor of Runge-Kutta methods, require the solution of systems of dimension d However, parallel computers have changed the scene and have motivated us to design parallel iteration methods for solving the implicit systems in such a way that the resulting methods become efficient step-by- step methods for integrating stiff initial-value problems. |
Beschreibung: | 14 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010187796 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 950518s1993 |||| 00||| engod | ||
035 | |a (OCoLC)31389658 | ||
035 | |a (DE-599)BVBBV010187796 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Houwen, Pieter J. van der |e Verfasser |4 aut | |
245 | 1 | 0 | |a Preconditioning in parallel Runge-Kutta methods for stiff initial value problems |c P. J. van der Houwen ; B. P. Sommeijer |
264 | 1 | |a Amsterdam |c 1993,10 | |
300 | |a 14 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |v 1993,10 | |
520 | 3 | |a Abstract: "From a theoretical point of view, collocation-type Runge-Kutta methods of collocation type belong to the most attractive step- by-step methods for integrating stiff problems. These methods combine excellent stability features with the property of superconvergence at the step points. Like the IVP itself, they only need the given initial value without requiring additional starting values, and therefore are a natural discretization of the initial-value problem. On the other hand, from a practical point of view, these methods have the drawback of requiring in each step the solution of a system of equations of dimension sd, s and d being the number of stages and the dimension of the initial-value problem, respectively. In contrast, linear multistep methods, the main competitor of Runge-Kutta methods, require the solution of systems of dimension d | |
520 | 3 | |a However, parallel computers have changed the scene and have motivated us to design parallel iteration methods for solving the implicit systems in such a way that the resulting methods become efficient step-by- step methods for integrating stiff initial-value problems. | |
650 | 4 | |a Runge-Kutta formulas | |
700 | 1 | |a Sommeijer, Ben P. |d ca. 20. Jh. |e Verfasser |0 (DE-588)132820269 |4 aut | |
810 | 2 | |a Afdeling Numerieke Wiskunde: Report NM |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 1993,10 |w (DE-604)BV010177152 |9 1993,10 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006768377 |
Datensatz im Suchindex
_version_ | 1804124589059473408 |
---|---|
any_adam_object | |
author | Houwen, Pieter J. van der Sommeijer, Ben P. ca. 20. Jh |
author_GND | (DE-588)132820269 |
author_facet | Houwen, Pieter J. van der Sommeijer, Ben P. ca. 20. Jh |
author_role | aut aut |
author_sort | Houwen, Pieter J. van der |
author_variant | p j v d h pjvd pjvdh b p s bp bps |
building | Verbundindex |
bvnumber | BV010187796 |
ctrlnum | (OCoLC)31389658 (DE-599)BVBBV010187796 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02255nam a2200313 cb4500</leader><controlfield tag="001">BV010187796</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950518s1993 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)31389658</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010187796</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Houwen, Pieter J. van der</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Preconditioning in parallel Runge-Kutta methods for stiff initial value problems</subfield><subfield code="c">P. J. van der Houwen ; B. P. Sommeijer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1993,10</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1993,10</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "From a theoretical point of view, collocation-type Runge-Kutta methods of collocation type belong to the most attractive step- by-step methods for integrating stiff problems. These methods combine excellent stability features with the property of superconvergence at the step points. Like the IVP itself, they only need the given initial value without requiring additional starting values, and therefore are a natural discretization of the initial-value problem. On the other hand, from a practical point of view, these methods have the drawback of requiring in each step the solution of a system of equations of dimension sd, s and d being the number of stages and the dimension of the initial-value problem, respectively. In contrast, linear multistep methods, the main competitor of Runge-Kutta methods, require the solution of systems of dimension d</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">However, parallel computers have changed the scene and have motivated us to design parallel iteration methods for solving the implicit systems in such a way that the resulting methods become efficient step-by- step methods for integrating stiff initial-value problems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Runge-Kutta formulas</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sommeijer, Ben P.</subfield><subfield code="d">ca. 20. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132820269</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">1993,10</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1993,10</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006768377</subfield></datafield></record></collection> |
id | DE-604.BV010187796 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:48:04Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006768377 |
oclc_num | 31389658 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 14 S. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |
spelling | Houwen, Pieter J. van der Verfasser aut Preconditioning in parallel Runge-Kutta methods for stiff initial value problems P. J. van der Houwen ; B. P. Sommeijer Amsterdam 1993,10 14 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1993,10 Abstract: "From a theoretical point of view, collocation-type Runge-Kutta methods of collocation type belong to the most attractive step- by-step methods for integrating stiff problems. These methods combine excellent stability features with the property of superconvergence at the step points. Like the IVP itself, they only need the given initial value without requiring additional starting values, and therefore are a natural discretization of the initial-value problem. On the other hand, from a practical point of view, these methods have the drawback of requiring in each step the solution of a system of equations of dimension sd, s and d being the number of stages and the dimension of the initial-value problem, respectively. In contrast, linear multistep methods, the main competitor of Runge-Kutta methods, require the solution of systems of dimension d However, parallel computers have changed the scene and have motivated us to design parallel iteration methods for solving the implicit systems in such a way that the resulting methods become efficient step-by- step methods for integrating stiff initial-value problems. Runge-Kutta formulas Sommeijer, Ben P. ca. 20. Jh. Verfasser (DE-588)132820269 aut Afdeling Numerieke Wiskunde: Report NM Centrum voor Wiskunde en Informatica <Amsterdam> 1993,10 (DE-604)BV010177152 1993,10 |
spellingShingle | Houwen, Pieter J. van der Sommeijer, Ben P. ca. 20. Jh Preconditioning in parallel Runge-Kutta methods for stiff initial value problems Runge-Kutta formulas |
title | Preconditioning in parallel Runge-Kutta methods for stiff initial value problems |
title_auth | Preconditioning in parallel Runge-Kutta methods for stiff initial value problems |
title_exact_search | Preconditioning in parallel Runge-Kutta methods for stiff initial value problems |
title_full | Preconditioning in parallel Runge-Kutta methods for stiff initial value problems P. J. van der Houwen ; B. P. Sommeijer |
title_fullStr | Preconditioning in parallel Runge-Kutta methods for stiff initial value problems P. J. van der Houwen ; B. P. Sommeijer |
title_full_unstemmed | Preconditioning in parallel Runge-Kutta methods for stiff initial value problems P. J. van der Houwen ; B. P. Sommeijer |
title_short | Preconditioning in parallel Runge-Kutta methods for stiff initial value problems |
title_sort | preconditioning in parallel runge kutta methods for stiff initial value problems |
topic | Runge-Kutta formulas |
topic_facet | Runge-Kutta formulas |
volume_link | (DE-604)BV010177152 |
work_keys_str_mv | AT houwenpieterjvander preconditioninginparallelrungekuttamethodsforstiffinitialvalueproblems AT sommeijerbenp preconditioninginparallelrungekuttamethodsforstiffinitialvalueproblems |