A multigrid approach for the solution of the 2D semiconductor equations:
Abstract: "In this paper a multigrid method is presented for the solution of the steady semiconductor equations. The discretisation is made on an adaptive grid, by means of a Mixed Finite Element Method on rectangles, with the trapezoidal quadrature rule. In 1D the resulting scheme reduces to t...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1990
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
1990,3 |
Schlagworte: | |
Zusammenfassung: | Abstract: "In this paper a multigrid method is presented for the solution of the steady semiconductor equations. The discretisation is made on an adaptive grid, by means of a Mixed Finite Element Method on rectangles, with the trapezoidal quadrature rule. In 1D the resulting scheme reduces to the well known Scharfetter-Gummel discretisation. The grid transfer operators are selected in accordance with the discretisation. The multigrid solution method is based on a collective, symmetric 5-point Vanka relaxation, and -in order to admit very coarse grids- a local damping of the coarse grid collection is applied It is shown that the convergence rate is independent of the grid size. Since nested iteration is combined with the multigrid iteration, the resulting solution method has optimal efficiency. |
Beschreibung: | 18 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010187198 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 950518s1990 |||| 00||| engod | ||
035 | |a (OCoLC)22168880 | ||
035 | |a (DE-599)BVBBV010187198 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Molenaar, J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A multigrid approach for the solution of the 2D semiconductor equations |c J. Molenaar ; P. W. Hemker |
264 | 1 | |a Amsterdam |c 1990 | |
300 | |a 18 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |v 1990,3 | |
520 | 3 | |a Abstract: "In this paper a multigrid method is presented for the solution of the steady semiconductor equations. The discretisation is made on an adaptive grid, by means of a Mixed Finite Element Method on rectangles, with the trapezoidal quadrature rule. In 1D the resulting scheme reduces to the well known Scharfetter-Gummel discretisation. The grid transfer operators are selected in accordance with the discretisation. The multigrid solution method is based on a collective, symmetric 5-point Vanka relaxation, and -in order to admit very coarse grids- a local damping of the coarse grid collection is applied | |
520 | 3 | |a It is shown that the convergence rate is independent of the grid size. Since nested iteration is combined with the multigrid iteration, the resulting solution method has optimal efficiency. | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Semiconductors |x Mathematical models | |
700 | 1 | |a Hemker, Pieter W. |e Verfasser |4 aut | |
810 | 2 | |a Afdeling Numerieke Wiskunde: Report NM |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 1990,3 |w (DE-604)BV010177152 |9 1990,3 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006767852 |
Datensatz im Suchindex
_version_ | 1804124588224806912 |
---|---|
any_adam_object | |
author | Molenaar, J. Hemker, Pieter W. |
author_facet | Molenaar, J. Hemker, Pieter W. |
author_role | aut aut |
author_sort | Molenaar, J. |
author_variant | j m jm p w h pw pwh |
building | Verbundindex |
bvnumber | BV010187198 |
ctrlnum | (OCoLC)22168880 (DE-599)BVBBV010187198 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01911nam a2200325 cb4500</leader><controlfield tag="001">BV010187198</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950518s1990 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)22168880</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010187198</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Molenaar, J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A multigrid approach for the solution of the 2D semiconductor equations</subfield><subfield code="c">J. Molenaar ; P. W. Hemker</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">18 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1990,3</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "In this paper a multigrid method is presented for the solution of the steady semiconductor equations. The discretisation is made on an adaptive grid, by means of a Mixed Finite Element Method on rectangles, with the trapezoidal quadrature rule. In 1D the resulting scheme reduces to the well known Scharfetter-Gummel discretisation. The grid transfer operators are selected in accordance with the discretisation. The multigrid solution method is based on a collective, symmetric 5-point Vanka relaxation, and -in order to admit very coarse grids- a local damping of the coarse grid collection is applied</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">It is shown that the convergence rate is independent of the grid size. Since nested iteration is combined with the multigrid iteration, the resulting solution method has optimal efficiency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semiconductors</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hemker, Pieter W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">1990,3</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1990,3</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006767852</subfield></datafield></record></collection> |
id | DE-604.BV010187198 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:48:03Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006767852 |
oclc_num | 22168880 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 18 S. |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |
spelling | Molenaar, J. Verfasser aut A multigrid approach for the solution of the 2D semiconductor equations J. Molenaar ; P. W. Hemker Amsterdam 1990 18 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1990,3 Abstract: "In this paper a multigrid method is presented for the solution of the steady semiconductor equations. The discretisation is made on an adaptive grid, by means of a Mixed Finite Element Method on rectangles, with the trapezoidal quadrature rule. In 1D the resulting scheme reduces to the well known Scharfetter-Gummel discretisation. The grid transfer operators are selected in accordance with the discretisation. The multigrid solution method is based on a collective, symmetric 5-point Vanka relaxation, and -in order to admit very coarse grids- a local damping of the coarse grid collection is applied It is shown that the convergence rate is independent of the grid size. Since nested iteration is combined with the multigrid iteration, the resulting solution method has optimal efficiency. Mathematisches Modell Semiconductors Mathematical models Hemker, Pieter W. Verfasser aut Afdeling Numerieke Wiskunde: Report NM Centrum voor Wiskunde en Informatica <Amsterdam> 1990,3 (DE-604)BV010177152 1990,3 |
spellingShingle | Molenaar, J. Hemker, Pieter W. A multigrid approach for the solution of the 2D semiconductor equations Mathematisches Modell Semiconductors Mathematical models |
title | A multigrid approach for the solution of the 2D semiconductor equations |
title_auth | A multigrid approach for the solution of the 2D semiconductor equations |
title_exact_search | A multigrid approach for the solution of the 2D semiconductor equations |
title_full | A multigrid approach for the solution of the 2D semiconductor equations J. Molenaar ; P. W. Hemker |
title_fullStr | A multigrid approach for the solution of the 2D semiconductor equations J. Molenaar ; P. W. Hemker |
title_full_unstemmed | A multigrid approach for the solution of the 2D semiconductor equations J. Molenaar ; P. W. Hemker |
title_short | A multigrid approach for the solution of the 2D semiconductor equations |
title_sort | a multigrid approach for the solution of the 2d semiconductor equations |
topic | Mathematisches Modell Semiconductors Mathematical models |
topic_facet | Mathematisches Modell Semiconductors Mathematical models |
volume_link | (DE-604)BV010177152 |
work_keys_str_mv | AT molenaarj amultigridapproachforthesolutionofthe2dsemiconductorequations AT hemkerpieterw amultigridapproachforthesolutionofthe2dsemiconductorequations |