Parallel Jacobi iteration in implicit step-by-step methods:
Abstract: "An iteration scheme is described to solve the implicit relations that result from the application of an implicit integration method to an initial value problem (IVP). In this iteration scheme the amount of implicitness is still free so as to comprise a large variety of methods, runni...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1992
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
1992,18 |
Schlagworte: | |
Zusammenfassung: | Abstract: "An iteration scheme is described to solve the implicit relations that result from the application of an implicit integration method to an initial value problem (IVP). In this iteration scheme the amount of implicitness is still free so as to comprise a large variety of methods, running from fully explicit (functional iteration) to fully implicit (Newton's method). In the intermediate variants (the so-called Jacobi-type methods), the influence of the Jacobian matrix of the problem is gradually increased. Special emphasis is placed on the 'stage-value- Jacobi' iteration which uses only the diagonal of the Jacobian matrix Therefore, the convergence of this method crucially depends on the diagonally [sic] dominance of the Jacobian. Another characteristic of this scheme is that it allows for massive parallelism: For a d- dimensional IVP, d uncoupled systems of dimension s have to be solved, where s is the number of stages in the underlying implicit method (e.g., an s-stage Runge-Kutta method). Hence, on a parallel architecture with d processors (d>>1), we may expect an efficient process (for high- dimensional problems). |
Beschreibung: | 12 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010186105 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 950517s1992 |||| 00||| engod | ||
035 | |a (OCoLC)29451533 | ||
035 | |a (DE-599)BVBBV010186105 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Houwen, Pieter J. van |e Verfasser |4 aut | |
245 | 1 | 0 | |a Parallel Jacobi iteration in implicit step-by-step methods |c P. J. van der Houwen ; B. P. Sommeijer |
264 | 1 | |a Amsterdam |c 1992 | |
300 | |a 12 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |v 1992,18 | |
520 | 3 | |a Abstract: "An iteration scheme is described to solve the implicit relations that result from the application of an implicit integration method to an initial value problem (IVP). In this iteration scheme the amount of implicitness is still free so as to comprise a large variety of methods, running from fully explicit (functional iteration) to fully implicit (Newton's method). In the intermediate variants (the so-called Jacobi-type methods), the influence of the Jacobian matrix of the problem is gradually increased. Special emphasis is placed on the 'stage-value- Jacobi' iteration which uses only the diagonal of the Jacobian matrix | |
520 | 3 | |a Therefore, the convergence of this method crucially depends on the diagonally [sic] dominance of the Jacobian. Another characteristic of this scheme is that it allows for massive parallelism: For a d- dimensional IVP, d uncoupled systems of dimension s have to be solved, where s is the number of stages in the underlying implicit method (e.g., an s-stage Runge-Kutta method). Hence, on a parallel architecture with d processors (d>>1), we may expect an efficient process (for high- dimensional problems). | |
650 | 4 | |a Numerical analysis | |
700 | 1 | |a Sommeijer, Ben P. |d ca. 20. Jh. |e Verfasser |0 (DE-588)132820269 |4 aut | |
810 | 2 | |a Afdeling Numerieke Wiskunde: Report NM |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 1992,18 |w (DE-604)BV010177152 |9 1992,18 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006766918 |
Datensatz im Suchindex
_version_ | 1804124586652991488 |
---|---|
any_adam_object | |
author | Houwen, Pieter J. van Sommeijer, Ben P. ca. 20. Jh |
author_GND | (DE-588)132820269 |
author_facet | Houwen, Pieter J. van Sommeijer, Ben P. ca. 20. Jh |
author_role | aut aut |
author_sort | Houwen, Pieter J. van |
author_variant | p j v h pjv pjvh b p s bp bps |
building | Verbundindex |
bvnumber | BV010186105 |
ctrlnum | (OCoLC)29451533 (DE-599)BVBBV010186105 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02234nam a2200313 cb4500</leader><controlfield tag="001">BV010186105</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950517s1992 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)29451533</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010186105</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Houwen, Pieter J. van</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parallel Jacobi iteration in implicit step-by-step methods</subfield><subfield code="c">P. J. van der Houwen ; B. P. Sommeijer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">12 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1992,18</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "An iteration scheme is described to solve the implicit relations that result from the application of an implicit integration method to an initial value problem (IVP). In this iteration scheme the amount of implicitness is still free so as to comprise a large variety of methods, running from fully explicit (functional iteration) to fully implicit (Newton's method). In the intermediate variants (the so-called Jacobi-type methods), the influence of the Jacobian matrix of the problem is gradually increased. Special emphasis is placed on the 'stage-value- Jacobi' iteration which uses only the diagonal of the Jacobian matrix</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Therefore, the convergence of this method crucially depends on the diagonally [sic] dominance of the Jacobian. Another characteristic of this scheme is that it allows for massive parallelism: For a d- dimensional IVP, d uncoupled systems of dimension s have to be solved, where s is the number of stages in the underlying implicit method (e.g., an s-stage Runge-Kutta method). Hence, on a parallel architecture with d processors (d>>1), we may expect an efficient process (for high- dimensional problems).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sommeijer, Ben P.</subfield><subfield code="d">ca. 20. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132820269</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">1992,18</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1992,18</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006766918</subfield></datafield></record></collection> |
id | DE-604.BV010186105 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:48:01Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006766918 |
oclc_num | 29451533 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 12 S. |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |
spelling | Houwen, Pieter J. van Verfasser aut Parallel Jacobi iteration in implicit step-by-step methods P. J. van der Houwen ; B. P. Sommeijer Amsterdam 1992 12 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1992,18 Abstract: "An iteration scheme is described to solve the implicit relations that result from the application of an implicit integration method to an initial value problem (IVP). In this iteration scheme the amount of implicitness is still free so as to comprise a large variety of methods, running from fully explicit (functional iteration) to fully implicit (Newton's method). In the intermediate variants (the so-called Jacobi-type methods), the influence of the Jacobian matrix of the problem is gradually increased. Special emphasis is placed on the 'stage-value- Jacobi' iteration which uses only the diagonal of the Jacobian matrix Therefore, the convergence of this method crucially depends on the diagonally [sic] dominance of the Jacobian. Another characteristic of this scheme is that it allows for massive parallelism: For a d- dimensional IVP, d uncoupled systems of dimension s have to be solved, where s is the number of stages in the underlying implicit method (e.g., an s-stage Runge-Kutta method). Hence, on a parallel architecture with d processors (d>>1), we may expect an efficient process (for high- dimensional problems). Numerical analysis Sommeijer, Ben P. ca. 20. Jh. Verfasser (DE-588)132820269 aut Afdeling Numerieke Wiskunde: Report NM Centrum voor Wiskunde en Informatica <Amsterdam> 1992,18 (DE-604)BV010177152 1992,18 |
spellingShingle | Houwen, Pieter J. van Sommeijer, Ben P. ca. 20. Jh Parallel Jacobi iteration in implicit step-by-step methods Numerical analysis |
title | Parallel Jacobi iteration in implicit step-by-step methods |
title_auth | Parallel Jacobi iteration in implicit step-by-step methods |
title_exact_search | Parallel Jacobi iteration in implicit step-by-step methods |
title_full | Parallel Jacobi iteration in implicit step-by-step methods P. J. van der Houwen ; B. P. Sommeijer |
title_fullStr | Parallel Jacobi iteration in implicit step-by-step methods P. J. van der Houwen ; B. P. Sommeijer |
title_full_unstemmed | Parallel Jacobi iteration in implicit step-by-step methods P. J. van der Houwen ; B. P. Sommeijer |
title_short | Parallel Jacobi iteration in implicit step-by-step methods |
title_sort | parallel jacobi iteration in implicit step by step methods |
topic | Numerical analysis |
topic_facet | Numerical analysis |
volume_link | (DE-604)BV010177152 |
work_keys_str_mv | AT houwenpieterjvan paralleljacobiiterationinimplicitstepbystepmethods AT sommeijerbenp paralleljacobiiterationinimplicitstepbystepmethods |