A-stable diagonally implicit Runge-Kutta-Nyström methods for parallel computers:
Abstract: "In this paper, we study diagonally implicit Runge- Kutta-Nyström methods (DIRKN methods) for use on parallel computers. These methods are obtained by diagonally implicit iteration of fully implicit Runge-Kutta-Nyström methods (corrector methods). The number of iterations is chosen su...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1992
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
1992,8 |
Schlagworte: | |
Zusammenfassung: | Abstract: "In this paper, we study diagonally implicit Runge- Kutta-Nyström methods (DIRKN methods) for use on parallel computers. These methods are obtained by diagonally implicit iteration of fully implicit Runge-Kutta-Nyström methods (corrector methods). The number of iterations is chosen such that the method has the same order of accuracy as the corrector, and the iteration parameters serve to make the method at least A-stable. Since a large number of the stages can be computed in parallel, the methods are very efficient on parallel computers. We derive a number of A-stable, strongly A-stable and L-stable DIRKN methods of order p with s*(p) sequential, singly diagonal-implicit stages where s*(p) = [(p+1)/2] or s*(p) = [(p+1)/2]+1, [.] denoting the integer part function." |
Beschreibung: | 20 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010185745 | ||
003 | DE-604 | ||
005 | 20180302 | ||
007 | t | ||
008 | 950517s1992 |||| 00||| engod | ||
035 | |a (OCoLC)27961150 | ||
035 | |a (DE-599)BVBBV010185745 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Nguyen, Huu Cong |e Verfasser |0 (DE-588)1150724099 |4 aut | |
245 | 1 | 0 | |a A-stable diagonally implicit Runge-Kutta-Nyström methods for parallel computers |
264 | 1 | |a Amsterdam |c 1992 | |
300 | |a 20 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |v 1992,8 | |
520 | 3 | |a Abstract: "In this paper, we study diagonally implicit Runge- Kutta-Nyström methods (DIRKN methods) for use on parallel computers. These methods are obtained by diagonally implicit iteration of fully implicit Runge-Kutta-Nyström methods (corrector methods). The number of iterations is chosen such that the method has the same order of accuracy as the corrector, and the iteration parameters serve to make the method at least A-stable. Since a large number of the stages can be computed in parallel, the methods are very efficient on parallel computers. We derive a number of A-stable, strongly A-stable and L-stable DIRKN methods of order p with s*(p) sequential, singly diagonal-implicit stages where s*(p) = [(p+1)/2] or s*(p) = [(p+1)/2]+1, [.] denoting the integer part function." | |
650 | 4 | |a Runge-Kutta formulas | |
810 | 2 | |a Afdeling Numerieke Wiskunde: Report NM |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 1992,8 |w (DE-604)BV010177152 |9 1992,8 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006766593 |
Datensatz im Suchindex
_version_ | 1804124586124509184 |
---|---|
any_adam_object | |
author | Nguyen, Huu Cong |
author_GND | (DE-588)1150724099 |
author_facet | Nguyen, Huu Cong |
author_role | aut |
author_sort | Nguyen, Huu Cong |
author_variant | h c n hc hcn |
building | Verbundindex |
bvnumber | BV010185745 |
ctrlnum | (OCoLC)27961150 (DE-599)BVBBV010185745 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01776nam a2200289 cb4500</leader><controlfield tag="001">BV010185745</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180302 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950517s1992 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)27961150</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010185745</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nguyen, Huu Cong</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1150724099</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A-stable diagonally implicit Runge-Kutta-Nyström methods for parallel computers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">20 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1992,8</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "In this paper, we study diagonally implicit Runge- Kutta-Nyström methods (DIRKN methods) for use on parallel computers. These methods are obtained by diagonally implicit iteration of fully implicit Runge-Kutta-Nyström methods (corrector methods). The number of iterations is chosen such that the method has the same order of accuracy as the corrector, and the iteration parameters serve to make the method at least A-stable. Since a large number of the stages can be computed in parallel, the methods are very efficient on parallel computers. We derive a number of A-stable, strongly A-stable and L-stable DIRKN methods of order p with s*(p) sequential, singly diagonal-implicit stages where s*(p) = [(p+1)/2] or s*(p) = [(p+1)/2]+1, [.] denoting the integer part function."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Runge-Kutta formulas</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">1992,8</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1992,8</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006766593</subfield></datafield></record></collection> |
id | DE-604.BV010185745 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:48:01Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006766593 |
oclc_num | 27961150 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 20 S. |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |
spelling | Nguyen, Huu Cong Verfasser (DE-588)1150724099 aut A-stable diagonally implicit Runge-Kutta-Nyström methods for parallel computers Amsterdam 1992 20 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1992,8 Abstract: "In this paper, we study diagonally implicit Runge- Kutta-Nyström methods (DIRKN methods) for use on parallel computers. These methods are obtained by diagonally implicit iteration of fully implicit Runge-Kutta-Nyström methods (corrector methods). The number of iterations is chosen such that the method has the same order of accuracy as the corrector, and the iteration parameters serve to make the method at least A-stable. Since a large number of the stages can be computed in parallel, the methods are very efficient on parallel computers. We derive a number of A-stable, strongly A-stable and L-stable DIRKN methods of order p with s*(p) sequential, singly diagonal-implicit stages where s*(p) = [(p+1)/2] or s*(p) = [(p+1)/2]+1, [.] denoting the integer part function." Runge-Kutta formulas Afdeling Numerieke Wiskunde: Report NM Centrum voor Wiskunde en Informatica <Amsterdam> 1992,8 (DE-604)BV010177152 1992,8 |
spellingShingle | Nguyen, Huu Cong A-stable diagonally implicit Runge-Kutta-Nyström methods for parallel computers Runge-Kutta formulas |
title | A-stable diagonally implicit Runge-Kutta-Nyström methods for parallel computers |
title_auth | A-stable diagonally implicit Runge-Kutta-Nyström methods for parallel computers |
title_exact_search | A-stable diagonally implicit Runge-Kutta-Nyström methods for parallel computers |
title_full | A-stable diagonally implicit Runge-Kutta-Nyström methods for parallel computers |
title_fullStr | A-stable diagonally implicit Runge-Kutta-Nyström methods for parallel computers |
title_full_unstemmed | A-stable diagonally implicit Runge-Kutta-Nyström methods for parallel computers |
title_short | A-stable diagonally implicit Runge-Kutta-Nyström methods for parallel computers |
title_sort | a stable diagonally implicit runge kutta nystrom methods for parallel computers |
topic | Runge-Kutta formulas |
topic_facet | Runge-Kutta formulas |
volume_link | (DE-604)BV010177152 |
work_keys_str_mv | AT nguyenhuucong astablediagonallyimplicitrungekuttanystrommethodsforparallelcomputers |