Stability of parallel Volterra-Runge-Kutta methods:

Abstract: "In this paper, we analyse parallel iteration of Volterra-Runge-Kutta methods (PIVRK methods) for solving second-kind Volterra integral equations on parallel computers. We focuss [sic] on the determination of the region of convergence C and on the stability region S[subscript m] of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: Amsterdam 1992,7
Schriftenreihe:Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1992,7
Schlagworte:
Zusammenfassung:Abstract: "In this paper, we analyse parallel iteration of Volterra-Runge-Kutta methods (PIVRK methods) for solving second-kind Volterra integral equations on parallel computers. We focuss [sic] on the determination of the region of convergence C and on the stability region S[subscript m] of the iterated method obtained after m iterations. Results are presented for the convolution test equation. It turns out that the stability region S[subscript m] does not necessarily converge to the stability region S of the corrector. However, for finite m, S[subscript m] need not to be contained in C or S and may be much larger than C."
Beschreibung:11 S.