Stability of parallel Volterra-Runge-Kutta methods:
Abstract: "In this paper, we analyse parallel iteration of Volterra-Runge-Kutta methods (PIVRK methods) for solving second-kind Volterra integral equations on parallel computers. We focuss [sic] on the determination of the region of convergence C and on the stability region S[subscript m] of th...
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam
1992,7
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
1992,7 |
Schlagworte: | |
Zusammenfassung: | Abstract: "In this paper, we analyse parallel iteration of Volterra-Runge-Kutta methods (PIVRK methods) for solving second-kind Volterra integral equations on parallel computers. We focuss [sic] on the determination of the region of convergence C and on the stability region S[subscript m] of the iterated method obtained after m iterations. Results are presented for the convolution test equation. It turns out that the stability region S[subscript m] does not necessarily converge to the stability region S of the corrector. However, for finite m, S[subscript m] need not to be contained in C or S and may be much larger than C." |
Beschreibung: | 11 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010185720 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 950517s1992 |||| 00||| engod | ||
035 | |a (OCoLC)27961200 | ||
035 | |a (DE-599)BVBBV010185720 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
245 | 1 | 0 | |a Stability of parallel Volterra-Runge-Kutta methods |
264 | 1 | |a Amsterdam |c 1992,7 | |
300 | |a 11 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |v 1992,7 | |
520 | 3 | |a Abstract: "In this paper, we analyse parallel iteration of Volterra-Runge-Kutta methods (PIVRK methods) for solving second-kind Volterra integral equations on parallel computers. We focuss [sic] on the determination of the region of convergence C and on the stability region S[subscript m] of the iterated method obtained after m iterations. Results are presented for the convolution test equation. It turns out that the stability region S[subscript m] does not necessarily converge to the stability region S of the corrector. However, for finite m, S[subscript m] need not to be contained in C or S and may be much larger than C." | |
650 | 4 | |a Runge-Kutta formulas | |
650 | 4 | |a Volterra equations | |
700 | 1 | |a Crisci, M. R. |e Sonstige |4 oth | |
810 | 2 | |a Afdeling Numerieke Wiskunde: Report NM |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 1992,7 |w (DE-604)BV010177152 |9 1992,7 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006766573 |
Datensatz im Suchindex
_version_ | 1804124586083614720 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV010185720 |
ctrlnum | (OCoLC)27961200 (DE-599)BVBBV010185720 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01603nam a2200301 cb4500</leader><controlfield tag="001">BV010185720</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950517s1992 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)27961200</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010185720</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability of parallel Volterra-Runge-Kutta methods</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1992,7</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1992,7</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "In this paper, we analyse parallel iteration of Volterra-Runge-Kutta methods (PIVRK methods) for solving second-kind Volterra integral equations on parallel computers. We focuss [sic] on the determination of the region of convergence C and on the stability region S[subscript m] of the iterated method obtained after m iterations. Results are presented for the convolution test equation. It turns out that the stability region S[subscript m] does not necessarily converge to the stability region S of the corrector. However, for finite m, S[subscript m] need not to be contained in C or S and may be much larger than C."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Runge-Kutta formulas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volterra equations</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Crisci, M. R.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">1992,7</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1992,7</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006766573</subfield></datafield></record></collection> |
id | DE-604.BV010185720 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:48:01Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006766573 |
oclc_num | 27961200 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 11 S. |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |
spelling | Stability of parallel Volterra-Runge-Kutta methods Amsterdam 1992,7 11 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1992,7 Abstract: "In this paper, we analyse parallel iteration of Volterra-Runge-Kutta methods (PIVRK methods) for solving second-kind Volterra integral equations on parallel computers. We focuss [sic] on the determination of the region of convergence C and on the stability region S[subscript m] of the iterated method obtained after m iterations. Results are presented for the convolution test equation. It turns out that the stability region S[subscript m] does not necessarily converge to the stability region S of the corrector. However, for finite m, S[subscript m] need not to be contained in C or S and may be much larger than C." Runge-Kutta formulas Volterra equations Crisci, M. R. Sonstige oth Afdeling Numerieke Wiskunde: Report NM Centrum voor Wiskunde en Informatica <Amsterdam> 1992,7 (DE-604)BV010177152 1992,7 |
spellingShingle | Stability of parallel Volterra-Runge-Kutta methods Runge-Kutta formulas Volterra equations |
title | Stability of parallel Volterra-Runge-Kutta methods |
title_auth | Stability of parallel Volterra-Runge-Kutta methods |
title_exact_search | Stability of parallel Volterra-Runge-Kutta methods |
title_full | Stability of parallel Volterra-Runge-Kutta methods |
title_fullStr | Stability of parallel Volterra-Runge-Kutta methods |
title_full_unstemmed | Stability of parallel Volterra-Runge-Kutta methods |
title_short | Stability of parallel Volterra-Runge-Kutta methods |
title_sort | stability of parallel volterra runge kutta methods |
topic | Runge-Kutta formulas Volterra equations |
topic_facet | Runge-Kutta formulas Volterra equations |
volume_link | (DE-604)BV010177152 |
work_keys_str_mv | AT criscimr stabilityofparallelvolterrarungekuttamethods |