On steady, inviscid shock waves at continuously curved, convex surfaces:
Abstract: "An accurate and efficient numerical method for the steady, 2-D Euler equations is applied to study steady shock waves perpendicular to smooth, convex surfaces. The main subject of study is the flow near both ends of the shock wave. Some doubts are formulated about the correctness of...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1992
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
1992,2 |
Schlagworte: | |
Zusammenfassung: | Abstract: "An accurate and efficient numerical method for the steady, 2-D Euler equations is applied to study steady shock waves perpendicular to smooth, convex surfaces. The main subject of study is the flow near both ends of the shock wave. Some doubts are formulated about the correctness of a known analytical model of the inviscid shock-foot flow. Yet, the numerical results presented do not show that this analytical model is incorrect. For the inviscid shock-tip flow, two existing analytical solutions are discussed. The numerical results presented agree with one of these. Good numerical accuracy is achieved through a solution-adaptive, higher-order accurate finite-volume discretization. Good computational efficiency is obtained by a multigrid acceleration technique." |
Beschreibung: | 21 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010185551 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 950517s1992 |||| 00||| engod | ||
035 | |a (OCoLC)27961188 | ||
035 | |a (DE-599)BVBBV010185551 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Koren, Barry |e Verfasser |4 aut | |
245 | 1 | 0 | |a On steady, inviscid shock waves at continuously curved, convex surfaces |c B. Koren ; H. T. M. van der Maarel |
264 | 1 | |a Amsterdam |c 1992 | |
300 | |a 21 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |v 1992,2 | |
520 | 3 | |a Abstract: "An accurate and efficient numerical method for the steady, 2-D Euler equations is applied to study steady shock waves perpendicular to smooth, convex surfaces. The main subject of study is the flow near both ends of the shock wave. Some doubts are formulated about the correctness of a known analytical model of the inviscid shock-foot flow. Yet, the numerical results presented do not show that this analytical model is incorrect. For the inviscid shock-tip flow, two existing analytical solutions are discussed. The numerical results presented agree with one of these. Good numerical accuracy is achieved through a solution-adaptive, higher-order accurate finite-volume discretization. Good computational efficiency is obtained by a multigrid acceleration technique." | |
650 | 4 | |a Shock waves | |
700 | 1 | |a Maarel, H. T. van der |e Verfasser |4 aut | |
810 | 2 | |a Afdeling Numerieke Wiskunde: Report NM |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 1992,2 |w (DE-604)BV010177152 |9 1992,2 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006766421 |
Datensatz im Suchindex
_version_ | 1804124585856073728 |
---|---|
any_adam_object | |
author | Koren, Barry Maarel, H. T. van der |
author_facet | Koren, Barry Maarel, H. T. van der |
author_role | aut aut |
author_sort | Koren, Barry |
author_variant | b k bk h t v d m htvd htvdm |
building | Verbundindex |
bvnumber | BV010185551 |
ctrlnum | (OCoLC)27961188 (DE-599)BVBBV010185551 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01817nam a2200301 cb4500</leader><controlfield tag="001">BV010185551</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950517s1992 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)27961188</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010185551</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koren, Barry</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On steady, inviscid shock waves at continuously curved, convex surfaces</subfield><subfield code="c">B. Koren ; H. T. M. van der Maarel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">21 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1992,2</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "An accurate and efficient numerical method for the steady, 2-D Euler equations is applied to study steady shock waves perpendicular to smooth, convex surfaces. The main subject of study is the flow near both ends of the shock wave. Some doubts are formulated about the correctness of a known analytical model of the inviscid shock-foot flow. Yet, the numerical results presented do not show that this analytical model is incorrect. For the inviscid shock-tip flow, two existing analytical solutions are discussed. The numerical results presented agree with one of these. Good numerical accuracy is achieved through a solution-adaptive, higher-order accurate finite-volume discretization. Good computational efficiency is obtained by a multigrid acceleration technique."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shock waves</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maarel, H. T. van der</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">1992,2</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1992,2</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006766421</subfield></datafield></record></collection> |
id | DE-604.BV010185551 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:48:01Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006766421 |
oclc_num | 27961188 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 21 S. |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |
spelling | Koren, Barry Verfasser aut On steady, inviscid shock waves at continuously curved, convex surfaces B. Koren ; H. T. M. van der Maarel Amsterdam 1992 21 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1992,2 Abstract: "An accurate and efficient numerical method for the steady, 2-D Euler equations is applied to study steady shock waves perpendicular to smooth, convex surfaces. The main subject of study is the flow near both ends of the shock wave. Some doubts are formulated about the correctness of a known analytical model of the inviscid shock-foot flow. Yet, the numerical results presented do not show that this analytical model is incorrect. For the inviscid shock-tip flow, two existing analytical solutions are discussed. The numerical results presented agree with one of these. Good numerical accuracy is achieved through a solution-adaptive, higher-order accurate finite-volume discretization. Good computational efficiency is obtained by a multigrid acceleration technique." Shock waves Maarel, H. T. van der Verfasser aut Afdeling Numerieke Wiskunde: Report NM Centrum voor Wiskunde en Informatica <Amsterdam> 1992,2 (DE-604)BV010177152 1992,2 |
spellingShingle | Koren, Barry Maarel, H. T. van der On steady, inviscid shock waves at continuously curved, convex surfaces Shock waves |
title | On steady, inviscid shock waves at continuously curved, convex surfaces |
title_auth | On steady, inviscid shock waves at continuously curved, convex surfaces |
title_exact_search | On steady, inviscid shock waves at continuously curved, convex surfaces |
title_full | On steady, inviscid shock waves at continuously curved, convex surfaces B. Koren ; H. T. M. van der Maarel |
title_fullStr | On steady, inviscid shock waves at continuously curved, convex surfaces B. Koren ; H. T. M. van der Maarel |
title_full_unstemmed | On steady, inviscid shock waves at continuously curved, convex surfaces B. Koren ; H. T. M. van der Maarel |
title_short | On steady, inviscid shock waves at continuously curved, convex surfaces |
title_sort | on steady inviscid shock waves at continuously curved convex surfaces |
topic | Shock waves |
topic_facet | Shock waves |
volume_link | (DE-604)BV010177152 |
work_keys_str_mv | AT korenbarry onsteadyinviscidshockwavesatcontinuouslycurvedconvexsurfaces AT maarelhtvander onsteadyinviscidshockwavesatcontinuouslycurvedconvexsurfaces |