Nonlinear multigrid applied to a 1D stationary semiconductor model:
Abstract: "The nonlinear multigrid method is applied to a transistor problem in one dimension. A weak spot in the linearization of the well-known Scharfetter-Gummel discretization scheme is reported. Further it is shown that both the residual transfer and the solution transfer from a fine to a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1989
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
1989,5 |
Schlagworte: | |
Zusammenfassung: | Abstract: "The nonlinear multigrid method is applied to a transistor problem in one dimension. A weak spot in the linearization of the well-known Scharfetter-Gummel discretization scheme is reported. Further it is shown that both the residual transfer and the solution transfer from a fine to a course grid need special requirements due to the rapidly varying problem coefficients. Some modifications are proposed which make the multigrid algorithm perform well for the hard example problem." |
Beschreibung: | 30 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010181368 | ||
003 | DE-604 | ||
005 | 19950517 | ||
007 | t | ||
008 | 950515s1989 |||| 00||| engod | ||
035 | |a (OCoLC)20787212 | ||
035 | |a (DE-599)BVBBV010181368 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Zeeuw, Paul M. de |e Verfasser |4 aut | |
245 | 1 | 0 | |a Nonlinear multigrid applied to a 1D stationary semiconductor model |
264 | 1 | |a Amsterdam |c 1989 | |
300 | |a 30 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |v 1989,5 | |
520 | 3 | |a Abstract: "The nonlinear multigrid method is applied to a transistor problem in one dimension. A weak spot in the linearization of the well-known Scharfetter-Gummel discretization scheme is reported. Further it is shown that both the residual transfer and the solution transfer from a fine to a course grid need special requirements due to the rapidly varying problem coefficients. Some modifications are proposed which make the multigrid algorithm perform well for the hard example problem." | |
650 | 4 | |a Multigrid methods (Numerical analysis) | |
650 | 4 | |a Semiconductors | |
810 | 2 | |a Afdeling Numerieke Wiskunde: Report NM |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 1989,5 |w (DE-604)BV010177152 |9 1989,5 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006763382 |
Datensatz im Suchindex
_version_ | 1804124580776771584 |
---|---|
any_adam_object | |
author | Zeeuw, Paul M. de |
author_facet | Zeeuw, Paul M. de |
author_role | aut |
author_sort | Zeeuw, Paul M. de |
author_variant | p m d z pmd pmdz |
building | Verbundindex |
bvnumber | BV010181368 |
ctrlnum | (OCoLC)20787212 (DE-599)BVBBV010181368 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01497nam a2200301 cb4500</leader><controlfield tag="001">BV010181368</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19950517 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950515s1989 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)20787212</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010181368</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zeeuw, Paul M. de</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear multigrid applied to a 1D stationary semiconductor model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">30 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1989,5</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "The nonlinear multigrid method is applied to a transistor problem in one dimension. A weak spot in the linearization of the well-known Scharfetter-Gummel discretization scheme is reported. Further it is shown that both the residual transfer and the solution transfer from a fine to a course grid need special requirements due to the rapidly varying problem coefficients. Some modifications are proposed which make the multigrid algorithm perform well for the hard example problem."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multigrid methods (Numerical analysis)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semiconductors</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">1989,5</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1989,5</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006763382</subfield></datafield></record></collection> |
id | DE-604.BV010181368 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:47:56Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006763382 |
oclc_num | 20787212 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 30 S. |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |
spelling | Zeeuw, Paul M. de Verfasser aut Nonlinear multigrid applied to a 1D stationary semiconductor model Amsterdam 1989 30 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1989,5 Abstract: "The nonlinear multigrid method is applied to a transistor problem in one dimension. A weak spot in the linearization of the well-known Scharfetter-Gummel discretization scheme is reported. Further it is shown that both the residual transfer and the solution transfer from a fine to a course grid need special requirements due to the rapidly varying problem coefficients. Some modifications are proposed which make the multigrid algorithm perform well for the hard example problem." Multigrid methods (Numerical analysis) Semiconductors Afdeling Numerieke Wiskunde: Report NM Centrum voor Wiskunde en Informatica <Amsterdam> 1989,5 (DE-604)BV010177152 1989,5 |
spellingShingle | Zeeuw, Paul M. de Nonlinear multigrid applied to a 1D stationary semiconductor model Multigrid methods (Numerical analysis) Semiconductors |
title | Nonlinear multigrid applied to a 1D stationary semiconductor model |
title_auth | Nonlinear multigrid applied to a 1D stationary semiconductor model |
title_exact_search | Nonlinear multigrid applied to a 1D stationary semiconductor model |
title_full | Nonlinear multigrid applied to a 1D stationary semiconductor model |
title_fullStr | Nonlinear multigrid applied to a 1D stationary semiconductor model |
title_full_unstemmed | Nonlinear multigrid applied to a 1D stationary semiconductor model |
title_short | Nonlinear multigrid applied to a 1D stationary semiconductor model |
title_sort | nonlinear multigrid applied to a 1d stationary semiconductor model |
topic | Multigrid methods (Numerical analysis) Semiconductors |
topic_facet | Multigrid methods (Numerical analysis) Semiconductors |
volume_link | (DE-604)BV010177152 |
work_keys_str_mv | AT zeeuwpaulmde nonlinearmultigridappliedtoa1dstationarysemiconductormodel |