A moving-grid interface for systems of one-dimensional time-dependent partial differential equations:
Abstract: "In the last decade numerical techniques have been developed to solve time-dependent Partial Differential Equations (PDEs) in one dimension having solutions with steep gradients in space and in time. One of these techniques, a moving-grid method based on a Lagrangian description of th...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1989
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
1989,4 |
Schlagworte: | |
Zusammenfassung: | Abstract: "In the last decade numerical techniques have been developed to solve time-dependent Partial Differential Equations (PDEs) in one dimension having solutions with steep gradients in space and in time. One of these techniques, a moving-grid method based on a Lagrangian description of the PDE and a smoothed-equidistribution principle to define the grid positions at each time-level, has been coupled to a spatial discretization method which automatically discretized the spatial part of the user-defined PDE following the Method of Lines approach We supply two subroutines, CWRESU and CWRESX, which compute the residuals of the ODE system obtained from semi-discretizing resp., the PDE and the set of moving-grid equations. These routines are combined in an enveloping routine SKMRES which delivers the residuals of the complete ODE system to be used in a SPRINT[2,3,] environment. To solve this stiff, nonlinear implicit ODE system, a robust and efficient time-integrator must be applied, such as one of the BDF modules in SPRINT. Some numerical examples are shown to illustrate the simple and effective use of this software interface. |
Beschreibung: | 37 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010181347 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 950515s1989 |||| 00||| engod | ||
035 | |a (OCoLC)20787204 | ||
035 | |a (DE-599)BVBBV010181347 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Blom, J. G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A moving-grid interface for systems of one-dimensional time-dependent partial differential equations |c J. G. Blom ; P. A. Zegeling |
264 | 1 | |a Amsterdam |c 1989 | |
300 | |a 37 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |v 1989,4 | |
520 | 3 | |a Abstract: "In the last decade numerical techniques have been developed to solve time-dependent Partial Differential Equations (PDEs) in one dimension having solutions with steep gradients in space and in time. One of these techniques, a moving-grid method based on a Lagrangian description of the PDE and a smoothed-equidistribution principle to define the grid positions at each time-level, has been coupled to a spatial discretization method which automatically discretized the spatial part of the user-defined PDE following the Method of Lines approach | |
520 | 3 | |a We supply two subroutines, CWRESU and CWRESX, which compute the residuals of the ODE system obtained from semi-discretizing resp., the PDE and the set of moving-grid equations. These routines are combined in an enveloping routine SKMRES which delivers the residuals of the complete ODE system to be used in a SPRINT[2,3,] environment. To solve this stiff, nonlinear implicit ODE system, a robust and efficient time-integrator must be applied, such as one of the BDF modules in SPRINT. Some numerical examples are shown to illustrate the simple and effective use of this software interface. | |
650 | 4 | |a Differential equations, Partial |x Numerical solutions |x Computer programs | |
700 | 1 | |a Zegeling, P. A. |e Verfasser |4 aut | |
810 | 2 | |a Afdeling Numerieke Wiskunde: Report NM |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 1989,4 |w (DE-604)BV010177152 |9 1989,4 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006763366 |
Datensatz im Suchindex
_version_ | 1804124580747411456 |
---|---|
any_adam_object | |
author | Blom, J. G. Zegeling, P. A. |
author_facet | Blom, J. G. Zegeling, P. A. |
author_role | aut aut |
author_sort | Blom, J. G. |
author_variant | j g b jg jgb p a z pa paz |
building | Verbundindex |
bvnumber | BV010181347 |
ctrlnum | (OCoLC)20787204 (DE-599)BVBBV010181347 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02277nam a2200313 cb4500</leader><controlfield tag="001">BV010181347</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950515s1989 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)20787204</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010181347</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Blom, J. G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A moving-grid interface for systems of one-dimensional time-dependent partial differential equations</subfield><subfield code="c">J. G. Blom ; P. A. Zegeling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">37 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1989,4</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "In the last decade numerical techniques have been developed to solve time-dependent Partial Differential Equations (PDEs) in one dimension having solutions with steep gradients in space and in time. One of these techniques, a moving-grid method based on a Lagrangian description of the PDE and a smoothed-equidistribution principle to define the grid positions at each time-level, has been coupled to a spatial discretization method which automatically discretized the spatial part of the user-defined PDE following the Method of Lines approach</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">We supply two subroutines, CWRESU and CWRESX, which compute the residuals of the ODE system obtained from semi-discretizing resp., the PDE and the set of moving-grid equations. These routines are combined in an enveloping routine SKMRES which delivers the residuals of the complete ODE system to be used in a SPRINT[2,3,] environment. To solve this stiff, nonlinear implicit ODE system, a robust and efficient time-integrator must be applied, such as one of the BDF modules in SPRINT. Some numerical examples are shown to illustrate the simple and effective use of this software interface.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield><subfield code="x">Numerical solutions</subfield><subfield code="x">Computer programs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zegeling, P. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">1989,4</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1989,4</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006763366</subfield></datafield></record></collection> |
id | DE-604.BV010181347 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:47:56Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006763366 |
oclc_num | 20787204 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 37 S. |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |
spelling | Blom, J. G. Verfasser aut A moving-grid interface for systems of one-dimensional time-dependent partial differential equations J. G. Blom ; P. A. Zegeling Amsterdam 1989 37 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1989,4 Abstract: "In the last decade numerical techniques have been developed to solve time-dependent Partial Differential Equations (PDEs) in one dimension having solutions with steep gradients in space and in time. One of these techniques, a moving-grid method based on a Lagrangian description of the PDE and a smoothed-equidistribution principle to define the grid positions at each time-level, has been coupled to a spatial discretization method which automatically discretized the spatial part of the user-defined PDE following the Method of Lines approach We supply two subroutines, CWRESU and CWRESX, which compute the residuals of the ODE system obtained from semi-discretizing resp., the PDE and the set of moving-grid equations. These routines are combined in an enveloping routine SKMRES which delivers the residuals of the complete ODE system to be used in a SPRINT[2,3,] environment. To solve this stiff, nonlinear implicit ODE system, a robust and efficient time-integrator must be applied, such as one of the BDF modules in SPRINT. Some numerical examples are shown to illustrate the simple and effective use of this software interface. Differential equations, Partial Numerical solutions Computer programs Zegeling, P. A. Verfasser aut Afdeling Numerieke Wiskunde: Report NM Centrum voor Wiskunde en Informatica <Amsterdam> 1989,4 (DE-604)BV010177152 1989,4 |
spellingShingle | Blom, J. G. Zegeling, P. A. A moving-grid interface for systems of one-dimensional time-dependent partial differential equations Differential equations, Partial Numerical solutions Computer programs |
title | A moving-grid interface for systems of one-dimensional time-dependent partial differential equations |
title_auth | A moving-grid interface for systems of one-dimensional time-dependent partial differential equations |
title_exact_search | A moving-grid interface for systems of one-dimensional time-dependent partial differential equations |
title_full | A moving-grid interface for systems of one-dimensional time-dependent partial differential equations J. G. Blom ; P. A. Zegeling |
title_fullStr | A moving-grid interface for systems of one-dimensional time-dependent partial differential equations J. G. Blom ; P. A. Zegeling |
title_full_unstemmed | A moving-grid interface for systems of one-dimensional time-dependent partial differential equations J. G. Blom ; P. A. Zegeling |
title_short | A moving-grid interface for systems of one-dimensional time-dependent partial differential equations |
title_sort | a moving grid interface for systems of one dimensional time dependent partial differential equations |
topic | Differential equations, Partial Numerical solutions Computer programs |
topic_facet | Differential equations, Partial Numerical solutions Computer programs |
volume_link | (DE-604)BV010177152 |
work_keys_str_mv | AT blomjg amovinggridinterfaceforsystemsofonedimensionaltimedependentpartialdifferentialequations AT zegelingpa amovinggridinterfaceforsystemsofonedimensionaltimedependentpartialdifferentialequations |