Basic process algebra with iteration: completeness of its equational axioms
Abstract: "Bergstra, Bethke & Ponse [BBP93] proposed an axiomatisation for Basic Process Algebra extended with iteration. In this paper, we prove that this axiomatisation is complete with respect to bisimulation equivalence. To obtain this result, we will set up a term rewriting system, bas...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1993
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS
93,68 |
Schlagworte: | |
Zusammenfassung: | Abstract: "Bergstra, Bethke & Ponse [BBP93] proposed an axiomatisation for Basic Process Algebra extended with iteration. In this paper, we prove that this axiomatisation is complete with respect to bisimulation equivalence. To obtain this result, we will set up a term rewriting system, based on the axioms, and prove that this term rewriting system is terminating, and that bisimilar normal forms are syntactically equal." |
Beschreibung: | 16 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010177446 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 950511s1993 |||| 00||| engod | ||
035 | |a (OCoLC)31372097 | ||
035 | |a (DE-599)BVBBV010177446 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
100 | 1 | |a Fokkink, Willem J. |d 1965- |e Verfasser |0 (DE-588)121536831 |4 aut | |
245 | 1 | 0 | |a Basic process algebra with iteration |b completeness of its equational axioms |c W. J. Fokkink ; H. Zantema |
264 | 1 | |a Amsterdam |c 1993 | |
300 | |a 16 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS |v 93,68 | |
520 | 3 | |a Abstract: "Bergstra, Bethke & Ponse [BBP93] proposed an axiomatisation for Basic Process Algebra extended with iteration. In this paper, we prove that this axiomatisation is complete with respect to bisimulation equivalence. To obtain this result, we will set up a term rewriting system, based on the axioms, and prove that this term rewriting system is terminating, and that bisimilar normal forms are syntactically equal." | |
650 | 4 | |a Computer programming | |
700 | 1 | |a Zantema, Hans |e Verfasser |4 aut | |
810 | 2 | |a Department of Computer Science: Report CS |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 93,68 |w (DE-604)BV008928356 |9 93,68 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006759979 |
Datensatz im Suchindex
_version_ | 1804124575260213248 |
---|---|
any_adam_object | |
author | Fokkink, Willem J. 1965- Zantema, Hans |
author_GND | (DE-588)121536831 |
author_facet | Fokkink, Willem J. 1965- Zantema, Hans |
author_role | aut aut |
author_sort | Fokkink, Willem J. 1965- |
author_variant | w j f wj wjf h z hz |
building | Verbundindex |
bvnumber | BV010177446 |
ctrlnum | (OCoLC)31372097 (DE-599)BVBBV010177446 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01470nam a2200289 cb4500</leader><controlfield tag="001">BV010177446</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950511s1993 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)31372097</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010177446</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fokkink, Willem J.</subfield><subfield code="d">1965-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121536831</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Basic process algebra with iteration</subfield><subfield code="b">completeness of its equational axioms</subfield><subfield code="c">W. J. Fokkink ; H. Zantema</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">16 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS</subfield><subfield code="v">93,68</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "Bergstra, Bethke & Ponse [BBP93] proposed an axiomatisation for Basic Process Algebra extended with iteration. In this paper, we prove that this axiomatisation is complete with respect to bisimulation equivalence. To obtain this result, we will set up a term rewriting system, based on the axioms, and prove that this term rewriting system is terminating, and that bisimilar normal forms are syntactically equal."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer programming</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zantema, Hans</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Report CS</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">93,68</subfield><subfield code="w">(DE-604)BV008928356</subfield><subfield code="9">93,68</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006759979</subfield></datafield></record></collection> |
id | DE-604.BV010177446 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:47:50Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006759979 |
oclc_num | 31372097 |
open_access_boolean | |
physical | 16 S. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS |
spelling | Fokkink, Willem J. 1965- Verfasser (DE-588)121536831 aut Basic process algebra with iteration completeness of its equational axioms W. J. Fokkink ; H. Zantema Amsterdam 1993 16 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS 93,68 Abstract: "Bergstra, Bethke & Ponse [BBP93] proposed an axiomatisation for Basic Process Algebra extended with iteration. In this paper, we prove that this axiomatisation is complete with respect to bisimulation equivalence. To obtain this result, we will set up a term rewriting system, based on the axioms, and prove that this term rewriting system is terminating, and that bisimilar normal forms are syntactically equal." Computer programming Zantema, Hans Verfasser aut Department of Computer Science: Report CS Centrum voor Wiskunde en Informatica <Amsterdam> 93,68 (DE-604)BV008928356 93,68 |
spellingShingle | Fokkink, Willem J. 1965- Zantema, Hans Basic process algebra with iteration completeness of its equational axioms Computer programming |
title | Basic process algebra with iteration completeness of its equational axioms |
title_auth | Basic process algebra with iteration completeness of its equational axioms |
title_exact_search | Basic process algebra with iteration completeness of its equational axioms |
title_full | Basic process algebra with iteration completeness of its equational axioms W. J. Fokkink ; H. Zantema |
title_fullStr | Basic process algebra with iteration completeness of its equational axioms W. J. Fokkink ; H. Zantema |
title_full_unstemmed | Basic process algebra with iteration completeness of its equational axioms W. J. Fokkink ; H. Zantema |
title_short | Basic process algebra with iteration |
title_sort | basic process algebra with iteration completeness of its equational axioms |
title_sub | completeness of its equational axioms |
topic | Computer programming |
topic_facet | Computer programming |
volume_link | (DE-604)BV008928356 |
work_keys_str_mv | AT fokkinkwillemj basicprocessalgebrawithiterationcompletenessofitsequationalaxioms AT zantemahans basicprocessalgebrawithiterationcompletenessofitsequationalaxioms |