Neural network perception for mobile robot guidance:
Abstract: "Vision based mobile robot guidance has proven difficult for classical machine vision methods because of the diversity and real time constraints inherent in the task. This thesis describes a connectionist system called ALVINN (Autonomous Land Vehicle In a Neural Network) that overcome...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Pittsburgh, PA
School of Computer Science, Carnegie Mellon Univ.
1992
|
Schriftenreihe: | School of Computer Science <Pittsburgh, Pa.>: CMU-CS
1992,115 |
Schlagworte: | |
Zusammenfassung: | Abstract: "Vision based mobile robot guidance has proven difficult for classical machine vision methods because of the diversity and real time constraints inherent in the task. This thesis describes a connectionist system called ALVINN (Autonomous Land Vehicle In a Neural Network) that overcomes these difficulties. ALVINN learns to guide mobile robots using the back-propagation training algorithm. Because of its ability to learn from example, ALVINN can adapt to new situations and therefore cope with the diversity of the autonomous navigation task. But real world problems like vision based mobile robot guidance presents a different set of challenges for the connectionist paradigm Among them are: How to develop a general representation from a limited amount of real training data, How to understand the internal representations developed by artificial neural networks, How to estimate the reliability of individual networks, How to combine multiple networks trained for different situations into a single system, How to combine connectionist perception with symbolic reasoning. This thesis presents novel solutions to each of these problems. Using these techniques, the ALVINN system can learn to control an autonomous van in under 5 minutes by watching a person drive Once trained, individual ALVINN networks can drive in a variety of circumstances, including single-lane paved and unpaved roads, and multi- lane lined and unlined roads, at speeds of up to 55 miles per hour. The techniques also are shown to generalize to the task of controlling the precise foot placement of a walking robot. |
Beschreibung: | Zugl.: Pittsburgh, Pa., Univ., Diss., 1992 |
Beschreibung: | 207 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010172059 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 950509s1992 d||| m||| 00||| eng d | ||
035 | |a (OCoLC)26241918 | ||
035 | |a (DE-599)BVBBV010172059 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 510.7808 |b C28r 92-115 | |
084 | |a ZQ 6250 |0 (DE-625)158184: |2 rvk | ||
084 | |a FER 986d |2 stub | ||
084 | |a DAT 717d |2 stub | ||
084 | |a DAT 815d |2 stub | ||
084 | |a DAT 760d |2 stub | ||
088 | |a CMU CS 92 115 | ||
100 | 1 | |a Pomerleau, Dean A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Neural network perception for mobile robot guidance |c Dean A. Pomerleau |
246 | 1 | 3 | |a CMU CS 92 115 |
264 | 1 | |a Pittsburgh, PA |b School of Computer Science, Carnegie Mellon Univ. |c 1992 | |
300 | |a 207 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a School of Computer Science <Pittsburgh, Pa.>: CMU-CS |v 1992,115 | |
500 | |a Zugl.: Pittsburgh, Pa., Univ., Diss., 1992 | ||
520 | 3 | |a Abstract: "Vision based mobile robot guidance has proven difficult for classical machine vision methods because of the diversity and real time constraints inherent in the task. This thesis describes a connectionist system called ALVINN (Autonomous Land Vehicle In a Neural Network) that overcomes these difficulties. ALVINN learns to guide mobile robots using the back-propagation training algorithm. Because of its ability to learn from example, ALVINN can adapt to new situations and therefore cope with the diversity of the autonomous navigation task. But real world problems like vision based mobile robot guidance presents a different set of challenges for the connectionist paradigm | |
520 | 3 | |a Among them are: How to develop a general representation from a limited amount of real training data, How to understand the internal representations developed by artificial neural networks, How to estimate the reliability of individual networks, How to combine multiple networks trained for different situations into a single system, How to combine connectionist perception with symbolic reasoning. This thesis presents novel solutions to each of these problems. Using these techniques, the ALVINN system can learn to control an autonomous van in under 5 minutes by watching a person drive | |
520 | 3 | |a Once trained, individual ALVINN networks can drive in a variety of circumstances, including single-lane paved and unpaved roads, and multi- lane lined and unlined roads, at speeds of up to 55 miles per hour. The techniques also are shown to generalize to the task of controlling the precise foot placement of a walking robot. | |
650 | 4 | |a Mobile robots | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 4 | |a Robot vision | |
650 | 0 | 7 | |a Roboter |0 (DE-588)4050208-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Steuerung |0 (DE-588)4057472-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mobiler Roboter |0 (DE-588)4191911-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | 1 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |D s |
689 | 0 | 2 | |a Roboter |0 (DE-588)4050208-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 1 | 1 | |a Mobiler Roboter |0 (DE-588)4191911-7 |D s |
689 | 1 | 2 | |a Steuerung |0 (DE-588)4057472-6 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
830 | 0 | |a School of Computer Science <Pittsburgh, Pa.>: CMU-CS |v 1992,115 |w (DE-604)BV006187264 |9 1992,115 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006756402 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804124569428033536 |
---|---|
any_adam_object | |
author | Pomerleau, Dean A. |
author_facet | Pomerleau, Dean A. |
author_role | aut |
author_sort | Pomerleau, Dean A. |
author_variant | d a p da dap |
building | Verbundindex |
bvnumber | BV010172059 |
classification_rvk | ZQ 6250 |
classification_tum | FER 986d DAT 717d DAT 815d DAT 760d |
ctrlnum | (OCoLC)26241918 (DE-599)BVBBV010172059 |
dewey-full | 510.7808 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510.7808 |
dewey-search | 510.7808 |
dewey-sort | 3510.7808 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik Fertigungstechnik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03834nam a2200625 cb4500</leader><controlfield tag="001">BV010172059</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950509s1992 d||| m||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)26241918</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010172059</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510.7808</subfield><subfield code="b">C28r 92-115</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZQ 6250</subfield><subfield code="0">(DE-625)158184:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">FER 986d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 717d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 815d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 760d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">CMU CS 92 115</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pomerleau, Dean A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Neural network perception for mobile robot guidance</subfield><subfield code="c">Dean A. Pomerleau</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">CMU CS 92 115</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Pittsburgh, PA</subfield><subfield code="b">School of Computer Science, Carnegie Mellon Univ.</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">207 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">School of Computer Science <Pittsburgh, Pa.>: CMU-CS</subfield><subfield code="v">1992,115</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Zugl.: Pittsburgh, Pa., Univ., Diss., 1992</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "Vision based mobile robot guidance has proven difficult for classical machine vision methods because of the diversity and real time constraints inherent in the task. This thesis describes a connectionist system called ALVINN (Autonomous Land Vehicle In a Neural Network) that overcomes these difficulties. ALVINN learns to guide mobile robots using the back-propagation training algorithm. Because of its ability to learn from example, ALVINN can adapt to new situations and therefore cope with the diversity of the autonomous navigation task. But real world problems like vision based mobile robot guidance presents a different set of challenges for the connectionist paradigm</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Among them are: How to develop a general representation from a limited amount of real training data, How to understand the internal representations developed by artificial neural networks, How to estimate the reliability of individual networks, How to combine multiple networks trained for different situations into a single system, How to combine connectionist perception with symbolic reasoning. This thesis presents novel solutions to each of these problems. Using these techniques, the ALVINN system can learn to control an autonomous van in under 5 minutes by watching a person drive</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Once trained, individual ALVINN networks can drive in a variety of circumstances, including single-lane paved and unpaved roads, and multi- lane lined and unlined roads, at speeds of up to 55 miles per hour. The techniques also are shown to generalize to the task of controlling the precise foot placement of a walking robot.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mobile robots</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robot vision</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Roboter</subfield><subfield code="0">(DE-588)4050208-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Steuerung</subfield><subfield code="0">(DE-588)4057472-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mobiler Roboter</subfield><subfield code="0">(DE-588)4191911-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Roboter</subfield><subfield code="0">(DE-588)4050208-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mobiler Roboter</subfield><subfield code="0">(DE-588)4191911-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Steuerung</subfield><subfield code="0">(DE-588)4057472-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">School of Computer Science <Pittsburgh, Pa.>: CMU-CS</subfield><subfield code="v">1992,115</subfield><subfield code="w">(DE-604)BV006187264</subfield><subfield code="9">1992,115</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006756402</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV010172059 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:47:45Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006756402 |
oclc_num | 26241918 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 207 S. graph. Darst. |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | School of Computer Science, Carnegie Mellon Univ. |
record_format | marc |
series | School of Computer Science <Pittsburgh, Pa.>: CMU-CS |
series2 | School of Computer Science <Pittsburgh, Pa.>: CMU-CS |
spelling | Pomerleau, Dean A. Verfasser aut Neural network perception for mobile robot guidance Dean A. Pomerleau CMU CS 92 115 Pittsburgh, PA School of Computer Science, Carnegie Mellon Univ. 1992 207 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier School of Computer Science <Pittsburgh, Pa.>: CMU-CS 1992,115 Zugl.: Pittsburgh, Pa., Univ., Diss., 1992 Abstract: "Vision based mobile robot guidance has proven difficult for classical machine vision methods because of the diversity and real time constraints inherent in the task. This thesis describes a connectionist system called ALVINN (Autonomous Land Vehicle In a Neural Network) that overcomes these difficulties. ALVINN learns to guide mobile robots using the back-propagation training algorithm. Because of its ability to learn from example, ALVINN can adapt to new situations and therefore cope with the diversity of the autonomous navigation task. But real world problems like vision based mobile robot guidance presents a different set of challenges for the connectionist paradigm Among them are: How to develop a general representation from a limited amount of real training data, How to understand the internal representations developed by artificial neural networks, How to estimate the reliability of individual networks, How to combine multiple networks trained for different situations into a single system, How to combine connectionist perception with symbolic reasoning. This thesis presents novel solutions to each of these problems. Using these techniques, the ALVINN system can learn to control an autonomous van in under 5 minutes by watching a person drive Once trained, individual ALVINN networks can drive in a variety of circumstances, including single-lane paved and unpaved roads, and multi- lane lined and unlined roads, at speeds of up to 55 miles per hour. The techniques also are shown to generalize to the task of controlling the precise foot placement of a walking robot. Mobile robots Neural networks (Computer science) Robot vision Roboter (DE-588)4050208-9 gnd rswk-swf Steuerung (DE-588)4057472-6 gnd rswk-swf Maschinelles Sehen (DE-588)4129594-8 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Mobiler Roboter (DE-588)4191911-7 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Neuronales Netz (DE-588)4226127-2 s Maschinelles Sehen (DE-588)4129594-8 s Roboter (DE-588)4050208-9 s DE-604 Mobiler Roboter (DE-588)4191911-7 s Steuerung (DE-588)4057472-6 s 1\p DE-604 School of Computer Science <Pittsburgh, Pa.>: CMU-CS 1992,115 (DE-604)BV006187264 1992,115 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pomerleau, Dean A. Neural network perception for mobile robot guidance School of Computer Science <Pittsburgh, Pa.>: CMU-CS Mobile robots Neural networks (Computer science) Robot vision Roboter (DE-588)4050208-9 gnd Steuerung (DE-588)4057472-6 gnd Maschinelles Sehen (DE-588)4129594-8 gnd Neuronales Netz (DE-588)4226127-2 gnd Mobiler Roboter (DE-588)4191911-7 gnd |
subject_GND | (DE-588)4050208-9 (DE-588)4057472-6 (DE-588)4129594-8 (DE-588)4226127-2 (DE-588)4191911-7 (DE-588)4113937-9 |
title | Neural network perception for mobile robot guidance |
title_alt | CMU CS 92 115 |
title_auth | Neural network perception for mobile robot guidance |
title_exact_search | Neural network perception for mobile robot guidance |
title_full | Neural network perception for mobile robot guidance Dean A. Pomerleau |
title_fullStr | Neural network perception for mobile robot guidance Dean A. Pomerleau |
title_full_unstemmed | Neural network perception for mobile robot guidance Dean A. Pomerleau |
title_short | Neural network perception for mobile robot guidance |
title_sort | neural network perception for mobile robot guidance |
topic | Mobile robots Neural networks (Computer science) Robot vision Roboter (DE-588)4050208-9 gnd Steuerung (DE-588)4057472-6 gnd Maschinelles Sehen (DE-588)4129594-8 gnd Neuronales Netz (DE-588)4226127-2 gnd Mobiler Roboter (DE-588)4191911-7 gnd |
topic_facet | Mobile robots Neural networks (Computer science) Robot vision Roboter Steuerung Maschinelles Sehen Neuronales Netz Mobiler Roboter Hochschulschrift |
volume_link | (DE-604)BV006187264 |
work_keys_str_mv | AT pomerleaudeana neuralnetworkperceptionformobilerobotguidance AT pomerleaudeana cmucs92115 |