Multigrid eigenvalue methods for the neutron multigroup diffusion equations:
Abstract: "Safety analysis of nuclear reactors strongly relies on numerical simulation of the reactor core. A central problem is the determination of the neutron distribution. This is usually done by treating neutron motion as a diffusion process and solving the stationary multigroup neutron di...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
München
1994
|
Schriftenreihe: | Technische Universität <München>: TUM-MATH
9407 |
Schlagworte: | |
Zusammenfassung: | Abstract: "Safety analysis of nuclear reactors strongly relies on numerical simulation of the reactor core. A central problem is the determination of the neutron distribution. This is usually done by treating neutron motion as a diffusion process and solving the stationary multigroup neutron diffusion equations. From a mathematical point of view these equations define an eigenvalue problem for a system of partial differential equations that leads to a generalized eigenproblem after discretization. Multigrid methods can be applied efficiently to this problem. To use here the full potential of multigrid methods they must be used very carefully because of the singularity of the problem. One approach is to apply multigrid as iterative solver within inverse iteration for the eigenproblem. Alternatively, multigrid may be applied directly to the eigenproblem when the multigrid cycles are adjusted carefully to the special type of equation. We consider both possibilities using ideas of Bank, Brandt, Hackbusch, and McCormick and compare the performance of the various methods for 2-D problems. It appears that a so-called direct approach may be an interesting alternative to inverse iteration." |
Beschreibung: | 22 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010164549 | ||
003 | DE-604 | ||
005 | 20040413 | ||
007 | t | ||
008 | 950424s1994 gw d||| t||| 00||| ger d | ||
016 | 7 | |a 943969956 |2 DE-101 | |
035 | |a (OCoLC)34870155 | ||
035 | |a (DE-599)BVBBV010164549 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-12 |a DE-91G | ||
088 | |a TUM M 9407 | ||
100 | 1 | |a Schmid, Werner |e Verfasser |4 aut | |
245 | 1 | 0 | |a Multigrid eigenvalue methods for the neutron multigroup diffusion equations |c Werner Schmid |
264 | 1 | |a München |c 1994 | |
300 | |a 22 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Technische Universität <München>: TUM-MATH |v 9407 | |
520 | 3 | |a Abstract: "Safety analysis of nuclear reactors strongly relies on numerical simulation of the reactor core. A central problem is the determination of the neutron distribution. This is usually done by treating neutron motion as a diffusion process and solving the stationary multigroup neutron diffusion equations. From a mathematical point of view these equations define an eigenvalue problem for a system of partial differential equations that leads to a generalized eigenproblem after discretization. Multigrid methods can be applied efficiently to this problem. To use here the full potential of multigrid methods they must be used very carefully because of the singularity of the problem. One approach is to apply multigrid as iterative solver within inverse iteration for the eigenproblem. Alternatively, multigrid may be applied directly to the eigenproblem when the multigrid cycles are adjusted carefully to the special type of equation. We consider both possibilities using ideas of Bank, Brandt, Hackbusch, and McCormick and compare the performance of the various methods for 2-D problems. It appears that a so-called direct approach may be an interesting alternative to inverse iteration." | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Differential equations, Partial |x Numerical solutions | |
650 | 4 | |a Eigenvalues | |
650 | 4 | |a Multigrid methods (Numerical analysis) | |
650 | 4 | |a Neutron transport theory |x Mathematical models | |
830 | 0 | |a Technische Universität <München>: TUM-MATH |v 9407 |w (DE-604)BV006186461 |9 9407 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006750071 |
Datensatz im Suchindex
_version_ | 1804124559406792704 |
---|---|
any_adam_object | |
author | Schmid, Werner |
author_facet | Schmid, Werner |
author_role | aut |
author_sort | Schmid, Werner |
author_variant | w s ws |
building | Verbundindex |
bvnumber | BV010164549 |
ctrlnum | (OCoLC)34870155 (DE-599)BVBBV010164549 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02401nam a2200373 cb4500</leader><controlfield tag="001">BV010164549</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040413 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950424s1994 gw d||| t||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">943969956</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)34870155</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010164549</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">TUM M 9407</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schmid, Werner</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multigrid eigenvalue methods for the neutron multigroup diffusion equations</subfield><subfield code="c">Werner Schmid</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">22 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Technische Universität <München>: TUM-MATH</subfield><subfield code="v">9407</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "Safety analysis of nuclear reactors strongly relies on numerical simulation of the reactor core. A central problem is the determination of the neutron distribution. This is usually done by treating neutron motion as a diffusion process and solving the stationary multigroup neutron diffusion equations. From a mathematical point of view these equations define an eigenvalue problem for a system of partial differential equations that leads to a generalized eigenproblem after discretization. Multigrid methods can be applied efficiently to this problem. To use here the full potential of multigrid methods they must be used very carefully because of the singularity of the problem. One approach is to apply multigrid as iterative solver within inverse iteration for the eigenproblem. Alternatively, multigrid may be applied directly to the eigenproblem when the multigrid cycles are adjusted carefully to the special type of equation. We consider both possibilities using ideas of Bank, Brandt, Hackbusch, and McCormick and compare the performance of the various methods for 2-D problems. It appears that a so-called direct approach may be an interesting alternative to inverse iteration."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eigenvalues</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multigrid methods (Numerical analysis)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neutron transport theory</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Technische Universität <München>: TUM-MATH</subfield><subfield code="v">9407</subfield><subfield code="w">(DE-604)BV006186461</subfield><subfield code="9">9407</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006750071</subfield></datafield></record></collection> |
id | DE-604.BV010164549 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:47:35Z |
institution | BVB |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006750071 |
oclc_num | 34870155 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM |
owner_facet | DE-12 DE-91G DE-BY-TUM |
physical | 22 S. graph. Darst. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
record_format | marc |
series | Technische Universität <München>: TUM-MATH |
series2 | Technische Universität <München>: TUM-MATH |
spelling | Schmid, Werner Verfasser aut Multigrid eigenvalue methods for the neutron multigroup diffusion equations Werner Schmid München 1994 22 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Technische Universität <München>: TUM-MATH 9407 Abstract: "Safety analysis of nuclear reactors strongly relies on numerical simulation of the reactor core. A central problem is the determination of the neutron distribution. This is usually done by treating neutron motion as a diffusion process and solving the stationary multigroup neutron diffusion equations. From a mathematical point of view these equations define an eigenvalue problem for a system of partial differential equations that leads to a generalized eigenproblem after discretization. Multigrid methods can be applied efficiently to this problem. To use here the full potential of multigrid methods they must be used very carefully because of the singularity of the problem. One approach is to apply multigrid as iterative solver within inverse iteration for the eigenproblem. Alternatively, multigrid may be applied directly to the eigenproblem when the multigrid cycles are adjusted carefully to the special type of equation. We consider both possibilities using ideas of Bank, Brandt, Hackbusch, and McCormick and compare the performance of the various methods for 2-D problems. It appears that a so-called direct approach may be an interesting alternative to inverse iteration." Mathematisches Modell Differential equations, Partial Numerical solutions Eigenvalues Multigrid methods (Numerical analysis) Neutron transport theory Mathematical models Technische Universität <München>: TUM-MATH 9407 (DE-604)BV006186461 9407 |
spellingShingle | Schmid, Werner Multigrid eigenvalue methods for the neutron multigroup diffusion equations Technische Universität <München>: TUM-MATH Mathematisches Modell Differential equations, Partial Numerical solutions Eigenvalues Multigrid methods (Numerical analysis) Neutron transport theory Mathematical models |
title | Multigrid eigenvalue methods for the neutron multigroup diffusion equations |
title_auth | Multigrid eigenvalue methods for the neutron multigroup diffusion equations |
title_exact_search | Multigrid eigenvalue methods for the neutron multigroup diffusion equations |
title_full | Multigrid eigenvalue methods for the neutron multigroup diffusion equations Werner Schmid |
title_fullStr | Multigrid eigenvalue methods for the neutron multigroup diffusion equations Werner Schmid |
title_full_unstemmed | Multigrid eigenvalue methods for the neutron multigroup diffusion equations Werner Schmid |
title_short | Multigrid eigenvalue methods for the neutron multigroup diffusion equations |
title_sort | multigrid eigenvalue methods for the neutron multigroup diffusion equations |
topic | Mathematisches Modell Differential equations, Partial Numerical solutions Eigenvalues Multigrid methods (Numerical analysis) Neutron transport theory Mathematical models |
topic_facet | Mathematisches Modell Differential equations, Partial Numerical solutions Eigenvalues Multigrid methods (Numerical analysis) Neutron transport theory Mathematical models |
volume_link | (DE-604)BV006186461 |
work_keys_str_mv | AT schmidwerner multigrideigenvaluemethodsfortheneutronmultigroupdiffusionequations |