Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems:
Abstract: "We consider mixed finite element discretizations of linear second order elliptic boundary value problems with respect to an adaptively generated hierarchy of possibly highly nonuniform simplicial triangulations. By a well known postprocessing technique the discrete problem is equival...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
München
1994
|
Schriftenreihe: | Technische Universität <München>: TUM-MATH
9411 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We consider mixed finite element discretizations of linear second order elliptic boundary value problems with respect to an adaptively generated hierarchy of possibly highly nonuniform simplicial triangulations. By a well known postprocessing technique the discrete problem is equivalent to a modified nonconforming discretization which is solved by preconditioned cg-iterations using a multilevel BPX-type preconditioner designed for standard nonconforming approximations. Local refinement of the triangulations is based on an a posteriori error estimator which can be easily derived from superconvergence results. The performance of the preconditioner and the error estimator is illustrated by several numerical examples." |
Beschreibung: | Literaturverz. S. 26 - 29 |
Beschreibung: | 29 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010164508 | ||
003 | DE-604 | ||
005 | 20040413 | ||
007 | t | ||
008 | 950424s1994 gw d||| t||| 00||| ger d | ||
016 | 7 | |a 943967678 |2 DE-101 | |
035 | |a (OCoLC)34870142 | ||
035 | |a (DE-599)BVBBV010164508 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-12 |a DE-91G | ||
088 | |a TUM M 9411 | ||
100 | 1 | |a Hoppe, Ronald H. W. |d 1951- |e Verfasser |0 (DE-588)133246876 |4 aut | |
245 | 1 | 0 | |a Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems |c Ronald H. W. Hoppe and Barbara Wohlmuth |
264 | 1 | |a München |c 1994 | |
300 | |a 29 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Technische Universität <München>: TUM-MATH |v 9411 | |
500 | |a Literaturverz. S. 26 - 29 | ||
520 | 3 | |a Abstract: "We consider mixed finite element discretizations of linear second order elliptic boundary value problems with respect to an adaptively generated hierarchy of possibly highly nonuniform simplicial triangulations. By a well known postprocessing technique the discrete problem is equivalent to a modified nonconforming discretization which is solved by preconditioned cg-iterations using a multilevel BPX-type preconditioner designed for standard nonconforming approximations. Local refinement of the triangulations is based on an a posteriori error estimator which can be easily derived from superconvergence results. The performance of the preconditioner and the error estimator is illustrated by several numerical examples." | |
650 | 4 | |a Boundary value problems | |
650 | 4 | |a Finite element method | |
700 | 1 | |a Wohlmuth, Barbara |d 1967- |e Verfasser |0 (DE-588)11316520X |4 aut | |
830 | 0 | |a Technische Universität <München>: TUM-MATH |v 9411 |w (DE-604)BV006186461 |9 9411 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006750043 |
Datensatz im Suchindex
_version_ | 1804124559378481152 |
---|---|
any_adam_object | |
author | Hoppe, Ronald H. W. 1951- Wohlmuth, Barbara 1967- |
author_GND | (DE-588)133246876 (DE-588)11316520X |
author_facet | Hoppe, Ronald H. W. 1951- Wohlmuth, Barbara 1967- |
author_role | aut aut |
author_sort | Hoppe, Ronald H. W. 1951- |
author_variant | r h w h rhw rhwh b w bw |
building | Verbundindex |
bvnumber | BV010164508 |
ctrlnum | (OCoLC)34870142 (DE-599)BVBBV010164508 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01969nam a2200361 cb4500</leader><controlfield tag="001">BV010164508</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040413 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950424s1994 gw d||| t||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">943967678</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)34870142</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010164508</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">TUM M 9411</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hoppe, Ronald H. W.</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133246876</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems</subfield><subfield code="c">Ronald H. W. Hoppe and Barbara Wohlmuth</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">29 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Technische Universität <München>: TUM-MATH</subfield><subfield code="v">9411</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 26 - 29</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We consider mixed finite element discretizations of linear second order elliptic boundary value problems with respect to an adaptively generated hierarchy of possibly highly nonuniform simplicial triangulations. By a well known postprocessing technique the discrete problem is equivalent to a modified nonconforming discretization which is solved by preconditioned cg-iterations using a multilevel BPX-type preconditioner designed for standard nonconforming approximations. Local refinement of the triangulations is based on an a posteriori error estimator which can be easily derived from superconvergence results. The performance of the preconditioner and the error estimator is illustrated by several numerical examples."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element method</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wohlmuth, Barbara</subfield><subfield code="d">1967-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)11316520X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Technische Universität <München>: TUM-MATH</subfield><subfield code="v">9411</subfield><subfield code="w">(DE-604)BV006186461</subfield><subfield code="9">9411</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006750043</subfield></datafield></record></collection> |
id | DE-604.BV010164508 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:47:35Z |
institution | BVB |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006750043 |
oclc_num | 34870142 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM |
owner_facet | DE-12 DE-91G DE-BY-TUM |
physical | 29 S. graph. Darst. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
record_format | marc |
series | Technische Universität <München>: TUM-MATH |
series2 | Technische Universität <München>: TUM-MATH |
spelling | Hoppe, Ronald H. W. 1951- Verfasser (DE-588)133246876 aut Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems Ronald H. W. Hoppe and Barbara Wohlmuth München 1994 29 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Technische Universität <München>: TUM-MATH 9411 Literaturverz. S. 26 - 29 Abstract: "We consider mixed finite element discretizations of linear second order elliptic boundary value problems with respect to an adaptively generated hierarchy of possibly highly nonuniform simplicial triangulations. By a well known postprocessing technique the discrete problem is equivalent to a modified nonconforming discretization which is solved by preconditioned cg-iterations using a multilevel BPX-type preconditioner designed for standard nonconforming approximations. Local refinement of the triangulations is based on an a posteriori error estimator which can be easily derived from superconvergence results. The performance of the preconditioner and the error estimator is illustrated by several numerical examples." Boundary value problems Finite element method Wohlmuth, Barbara 1967- Verfasser (DE-588)11316520X aut Technische Universität <München>: TUM-MATH 9411 (DE-604)BV006186461 9411 |
spellingShingle | Hoppe, Ronald H. W. 1951- Wohlmuth, Barbara 1967- Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems Technische Universität <München>: TUM-MATH Boundary value problems Finite element method |
title | Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems |
title_auth | Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems |
title_exact_search | Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems |
title_full | Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems Ronald H. W. Hoppe and Barbara Wohlmuth |
title_fullStr | Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems Ronald H. W. Hoppe and Barbara Wohlmuth |
title_full_unstemmed | Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems Ronald H. W. Hoppe and Barbara Wohlmuth |
title_short | Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems |
title_sort | adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems |
topic | Boundary value problems Finite element method |
topic_facet | Boundary value problems Finite element method |
volume_link | (DE-604)BV006186461 |
work_keys_str_mv | AT hopperonaldhw adaptivemultileveltechniquesformixedfiniteelementdiscretizationsofellipticboundaryvalueproblems AT wohlmuthbarbara adaptivemultileveltechniquesformixedfiniteelementdiscretizationsofellipticboundaryvalueproblems |