Global classical solutions for quasilinear hyperbolic systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Chichester u.a.
Wiley u.a.
1994
|
Schriftenreihe: | Collection recherches en mathématiques appliquées
32 |
Schlagworte: | |
Beschreibung: | VIII, 315 S. |
ISBN: | 0471950114 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010024331 | ||
003 | DE-604 | ||
005 | 20220224 | ||
007 | t | ||
008 | 950203s1994 |||| 00||| engod | ||
020 | |a 0471950114 |9 0-471-95011-4 | ||
035 | |a (OCoLC)636747299 | ||
035 | |a (DE-599)BVBBV010024331 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-12 |a DE-11 |a DE-188 | ||
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
084 | |a MAT 357f |2 stub | ||
100 | 1 | |a Li, Ta-Tsien |e Verfasser |4 aut | |
245 | 1 | 0 | |a Global classical solutions for quasilinear hyperbolic systems |c Li Ta-tsien |
264 | 1 | |a Chichester u.a. |b Wiley u.a. |c 1994 | |
300 | |a VIII, 315 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Collection recherches en mathématiques appliquées |v 32 | |
650 | 0 | 7 | |a Globale Lösung |0 (DE-588)4264389-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolisches System |0 (DE-588)4191897-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quasilineares hyperbolisches System |0 (DE-588)4373367-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quasilineares hyperbolisches System |0 (DE-588)4373367-0 |D s |
689 | 0 | 1 | |a Globale Lösung |0 (DE-588)4264389-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Hyperbolisches System |0 (DE-588)4191897-6 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |D s |
689 | 2 | |5 DE-604 | |
830 | 0 | |a Collection recherches en mathématiques appliquées |v 32 |w (DE-604)BV002654185 |9 32 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006646623 |
Datensatz im Suchindex
_version_ | 1804124404516388864 |
---|---|
any_adam_object | |
author | Li, Ta-Tsien |
author_facet | Li, Ta-Tsien |
author_role | aut |
author_sort | Li, Ta-Tsien |
author_variant | t t l ttl |
building | Verbundindex |
bvnumber | BV010024331 |
classification_rvk | SK 560 |
classification_tum | MAT 357f |
ctrlnum | (OCoLC)636747299 (DE-599)BVBBV010024331 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01625nam a2200433 cb4500</leader><controlfield tag="001">BV010024331</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220224 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950203s1994 |||| 00||| engod</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471950114</subfield><subfield code="9">0-471-95011-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)636747299</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010024331</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 357f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Ta-Tsien</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Global classical solutions for quasilinear hyperbolic systems</subfield><subfield code="c">Li Ta-tsien</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester u.a.</subfield><subfield code="b">Wiley u.a.</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 315 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Collection recherches en mathématiques appliquées</subfield><subfield code="v">32</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Lösung</subfield><subfield code="0">(DE-588)4264389-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quasilineares hyperbolisches System</subfield><subfield code="0">(DE-588)4373367-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quasilineares hyperbolisches System</subfield><subfield code="0">(DE-588)4373367-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Globale Lösung</subfield><subfield code="0">(DE-588)4264389-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Collection recherches en mathématiques appliquées</subfield><subfield code="v">32</subfield><subfield code="w">(DE-604)BV002654185</subfield><subfield code="9">32</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006646623</subfield></datafield></record></collection> |
id | DE-604.BV010024331 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:45:08Z |
institution | BVB |
isbn | 0471950114 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006646623 |
oclc_num | 636747299 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-12 DE-11 DE-188 |
owner_facet | DE-91G DE-BY-TUM DE-12 DE-11 DE-188 |
physical | VIII, 315 S. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Wiley u.a. |
record_format | marc |
series | Collection recherches en mathématiques appliquées |
series2 | Collection recherches en mathématiques appliquées |
spelling | Li, Ta-Tsien Verfasser aut Global classical solutions for quasilinear hyperbolic systems Li Ta-tsien Chichester u.a. Wiley u.a. 1994 VIII, 315 S. txt rdacontent n rdamedia nc rdacarrier Collection recherches en mathématiques appliquées 32 Globale Lösung (DE-588)4264389-2 gnd rswk-swf Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd rswk-swf Hyperbolisches System (DE-588)4191897-6 gnd rswk-swf Quasilineares hyperbolisches System (DE-588)4373367-0 gnd rswk-swf Quasilineares hyperbolisches System (DE-588)4373367-0 s Globale Lösung (DE-588)4264389-2 s DE-604 Hyperbolisches System (DE-588)4191897-6 s Hyperbolische Differentialgleichung (DE-588)4131213-2 s Collection recherches en mathématiques appliquées 32 (DE-604)BV002654185 32 |
spellingShingle | Li, Ta-Tsien Global classical solutions for quasilinear hyperbolic systems Collection recherches en mathématiques appliquées Globale Lösung (DE-588)4264389-2 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Hyperbolisches System (DE-588)4191897-6 gnd Quasilineares hyperbolisches System (DE-588)4373367-0 gnd |
subject_GND | (DE-588)4264389-2 (DE-588)4131213-2 (DE-588)4191897-6 (DE-588)4373367-0 |
title | Global classical solutions for quasilinear hyperbolic systems |
title_auth | Global classical solutions for quasilinear hyperbolic systems |
title_exact_search | Global classical solutions for quasilinear hyperbolic systems |
title_full | Global classical solutions for quasilinear hyperbolic systems Li Ta-tsien |
title_fullStr | Global classical solutions for quasilinear hyperbolic systems Li Ta-tsien |
title_full_unstemmed | Global classical solutions for quasilinear hyperbolic systems Li Ta-tsien |
title_short | Global classical solutions for quasilinear hyperbolic systems |
title_sort | global classical solutions for quasilinear hyperbolic systems |
topic | Globale Lösung (DE-588)4264389-2 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Hyperbolisches System (DE-588)4191897-6 gnd Quasilineares hyperbolisches System (DE-588)4373367-0 gnd |
topic_facet | Globale Lösung Hyperbolische Differentialgleichung Hyperbolisches System Quasilineares hyperbolisches System |
volume_link | (DE-604)BV002654185 |
work_keys_str_mv | AT litatsien globalclassicalsolutionsforquasilinearhyperbolicsystems |