Cardinal arithmetic:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford
Clarendon Press
1994
|
Schriftenreihe: | Oxford logic guides
29 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXI, 481 S. |
ISBN: | 0198537859 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009998895 | ||
003 | DE-604 | ||
005 | 20150116 | ||
007 | t | ||
008 | 950120s1994 |||| 00||| eng d | ||
020 | |a 0198537859 |9 0-19-853785-9 | ||
035 | |a (OCoLC)246784152 | ||
035 | |a (DE-599)BVBBV009998895 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-739 |a DE-29T |a DE-91G |a DE-19 |a DE-11 |a DE-188 | ||
084 | |a SK 150 |0 (DE-625)143218: |2 rvk | ||
084 | |a SK 155 |0 (DE-625)143219: |2 rvk | ||
084 | |a MAT 040f |2 stub | ||
100 | 1 | |a Shelah, Saharon |d 1945- |e Verfasser |0 (DE-588)120062755 |4 aut | |
245 | 1 | 0 | |a Cardinal arithmetic |c Saharon Shelah |
264 | 1 | |a Oxford |b Clarendon Press |c 1994 | |
300 | |a XXXI, 481 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Oxford logic guides |v 29 | |
650 | 0 | 7 | |a Kardinalzahltheorie |0 (DE-588)4163319-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Arithmetik |0 (DE-588)4002919-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kardinalzahl |0 (DE-588)4163318-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kardinalzahltheorie |0 (DE-588)4163319-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Kardinalzahl |0 (DE-588)4163318-0 |D s |
689 | 1 | 1 | |a Arithmetik |0 (DE-588)4002919-0 |D s |
689 | 1 | |5 DE-188 | |
830 | 0 | |a Oxford logic guides |v 29 |w (DE-604)BV000013997 |9 29 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006628384&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-006628384 |
Datensatz im Suchindex
_version_ | 1804124375642800128 |
---|---|
adam_text | CONTENTS
Contents vii
Acknowledgements x
Introduction xi
Basic definitions xvi
Annotated contents xvii
Modern history of cardinal arithmetic xxv
Could Cantor really have read it or what the reader
is assumed to know xxix
I Basic: cofinalities of small reduced products
[Sh 345a] 1
§0 Introduction 1
§1 The basic properties of pcf(a) 2
§2 Normality of A € pcf(a) for a 13
§3 Getting better representation: generating sequences
and cofinality systems 21
II Kw+i has a Jonsson algebra [Sh 355] 34
§0 Introduction 34
§1 Existence of lub in products, and representations of
A+ as true cofinality 40
§2 On pp instead of the Singular Cardinal Problem 54
§3 The cofinality of II a 60
§4 Applications 66
§5 Covering numbers, pp 84
§6 A Preeness 96
§7 Existence of Loo^ equivalent non isomorphic models
of singular cardinality A 108
III There are Jonsson algebras in many inacces¬
sible cardinals [Sh 365] 117
§0 Introduction 117
§1 Guessing clubs 118
§2 Finding C s which guess clubs _ 123
§3 Existence of Jonsson algebra and idp(C,I) 138
§4 Existence of strong colouring 156
IV Jonsson algebras in inaccessibles A, not A Mahlo
[Sh 380] 185
viii Contents
§0 Introduction 185
§1 The first A which is regular Jonsson is A Mahlo 185
§2 If A is inaccessible not A Mahlo then on A there is a
Jonsson algebra 196
V Bounding pp(//) when fi cf(/x) Ko using
ranks and normal filters [Sh 386] 213
§0 Introduction 213
§1 Existence of nice i s 221
§2 Various ranks 229
§3 More on ranks 239
§4 Preservative pairs 249
§5 Conclusions 259
VI Bounds on power of singulars: Induction [Sh 333]
266
§0 Introduction 266
§1 A generic ultrapower of the universe which has a A
like initial segment for almost every A 267
§2 The family of preservative pairs is closed under in¬
duction 269
VII Strong Covering Lemma and CH in V[r] [Sh g7]
275
§0 Introduction 275
§1 The Strong Covering Lemma: Definition and impli¬
cations 279
§2 Proof of the Strong Covering Lemma 284
§3 A counterexample 300
§4 When adding a real cannot destroy CH 302
VIII Advanced: Cofinalities of reduced products [Sh 371]
311
§0 Introduction 311
§1 Representation as true cofinality of products modulo
Jcbd 312
§2 J [a] is simply generated 327
§3 Also quite large b C pcf(a) behave nicely 333
§4 On prcj 341
§5 Successor of singular + ideal and A+ narrow order
B.A. in A+ 347
§6 npt and successor of regular 353
IX Cardinal Arithmetic [Sh 400] 358
§0 Introduction 358
Contents ix
§1 pp(A) = cov(A, A, Ni, 2) for the first non trivial A 362
§2 Why the HELL is it four? 371
§3 The smallest number of functions required to cover
all small products 376
§4 If 6 N4 has countable cofinality then ppN« N^ 388
§5 pp(A) large enough sufficient condition 398
Appendix
1 Colorings [Sh 282a] 416
2 Entangled orders and narrow Boolean alge¬
bras [Sh 345b] 424
Analytical Guide 435
Anotated content of continuations 461
References 471
|
any_adam_object | 1 |
author | Shelah, Saharon 1945- |
author_GND | (DE-588)120062755 |
author_facet | Shelah, Saharon 1945- |
author_role | aut |
author_sort | Shelah, Saharon 1945- |
author_variant | s s ss |
building | Verbundindex |
bvnumber | BV009998895 |
classification_rvk | SK 150 SK 155 |
classification_tum | MAT 040f |
ctrlnum | (OCoLC)246784152 (DE-599)BVBBV009998895 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01617nam a2200421 cb4500</leader><controlfield tag="001">BV009998895</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150116 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950120s1994 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0198537859</subfield><subfield code="9">0-19-853785-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246784152</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009998895</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 150</subfield><subfield code="0">(DE-625)143218:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 155</subfield><subfield code="0">(DE-625)143219:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 040f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shelah, Saharon</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120062755</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cardinal arithmetic</subfield><subfield code="c">Saharon Shelah</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Clarendon Press</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXI, 481 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Oxford logic guides</subfield><subfield code="v">29</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kardinalzahltheorie</subfield><subfield code="0">(DE-588)4163319-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Arithmetik</subfield><subfield code="0">(DE-588)4002919-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kardinalzahl</subfield><subfield code="0">(DE-588)4163318-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kardinalzahltheorie</subfield><subfield code="0">(DE-588)4163319-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kardinalzahl</subfield><subfield code="0">(DE-588)4163318-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Arithmetik</subfield><subfield code="0">(DE-588)4002919-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Oxford logic guides</subfield><subfield code="v">29</subfield><subfield code="w">(DE-604)BV000013997</subfield><subfield code="9">29</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006628384&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006628384</subfield></datafield></record></collection> |
id | DE-604.BV009998895 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:44:40Z |
institution | BVB |
isbn | 0198537859 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006628384 |
oclc_num | 246784152 |
open_access_boolean | |
owner | DE-12 DE-739 DE-29T DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-11 DE-188 |
owner_facet | DE-12 DE-739 DE-29T DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-11 DE-188 |
physical | XXXI, 481 S. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Clarendon Press |
record_format | marc |
series | Oxford logic guides |
series2 | Oxford logic guides |
spelling | Shelah, Saharon 1945- Verfasser (DE-588)120062755 aut Cardinal arithmetic Saharon Shelah Oxford Clarendon Press 1994 XXXI, 481 S. txt rdacontent n rdamedia nc rdacarrier Oxford logic guides 29 Kardinalzahltheorie (DE-588)4163319-2 gnd rswk-swf Arithmetik (DE-588)4002919-0 gnd rswk-swf Kardinalzahl (DE-588)4163318-0 gnd rswk-swf Kardinalzahltheorie (DE-588)4163319-2 s DE-604 Kardinalzahl (DE-588)4163318-0 s Arithmetik (DE-588)4002919-0 s DE-188 Oxford logic guides 29 (DE-604)BV000013997 29 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006628384&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Shelah, Saharon 1945- Cardinal arithmetic Oxford logic guides Kardinalzahltheorie (DE-588)4163319-2 gnd Arithmetik (DE-588)4002919-0 gnd Kardinalzahl (DE-588)4163318-0 gnd |
subject_GND | (DE-588)4163319-2 (DE-588)4002919-0 (DE-588)4163318-0 |
title | Cardinal arithmetic |
title_auth | Cardinal arithmetic |
title_exact_search | Cardinal arithmetic |
title_full | Cardinal arithmetic Saharon Shelah |
title_fullStr | Cardinal arithmetic Saharon Shelah |
title_full_unstemmed | Cardinal arithmetic Saharon Shelah |
title_short | Cardinal arithmetic |
title_sort | cardinal arithmetic |
topic | Kardinalzahltheorie (DE-588)4163319-2 gnd Arithmetik (DE-588)4002919-0 gnd Kardinalzahl (DE-588)4163318-0 gnd |
topic_facet | Kardinalzahltheorie Arithmetik Kardinalzahl |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006628384&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000013997 |
work_keys_str_mv | AT shelahsaharon cardinalarithmetic |