On the numerical differentiation of dfata:
The differentiation of data numerically divides naturally into two distinct problems: (i) the differentiation of exact data, and (ii) the differentiation of non-exact (experimental) data. In the report, the authors examine both problems.
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
1972
|
Schriftenreihe: | Princeton University / Department of Statistics: [Technical report / 2]
13 |
Schlagworte: | |
Zusammenfassung: | The differentiation of data numerically divides naturally into two distinct problems: (i) the differentiation of exact data, and (ii) the differentiation of non-exact (experimental) data. In the report, the authors examine both problems. |
Beschreibung: | 111 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009956056 | ||
003 | DE-604 | ||
005 | 20000303 | ||
007 | t | ||
008 | 941220s1972 |||| 00||| engod | ||
035 | |a (OCoLC)227677590 | ||
035 | |a (DE-599)BVBBV009956056 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
100 | 1 | |a Anderssen, R. S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a On the numerical differentiation of dfata |c R. S. Anderssen and P. Bloomfield |
264 | 1 | |a Princeton, NJ |c 1972 | |
300 | |a 111 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Princeton University / Department of Statistics: [Technical report / 2] |v 13 | |
520 | 3 | |a The differentiation of data numerically divides naturally into two distinct problems: (i) the differentiation of exact data, and (ii) the differentiation of non-exact (experimental) data. In the report, the authors examine both problems. | |
650 | 4 | |a NUMERICAL DIFFERENTIATION | |
650 | 4 | |a SPECTRUM ANALYSIS | |
650 | 7 | |a Analytic functions |2 dtict | |
650 | 7 | |a Approximation(mathematics) |2 dtict | |
650 | 7 | |a Computer programs |2 dtict | |
650 | 7 | |a Differential equations |2 dtict | |
650 | 7 | |a Integral equations |2 dtict | |
650 | 7 | |a Interpolation |2 dtict | |
650 | 7 | |a Least squares method |2 dtict | |
650 | 7 | |a Polynomials |2 dtict | |
650 | 7 | |a Regression analysis |2 dtict | |
650 | 7 | |a Statistical data |2 dtict | |
650 | 7 | |a Statistics and Probability |2 scgdst | |
650 | 7 | |a Taylors series |2 dtict | |
650 | 7 | |a Time series analysis |2 dtict | |
700 | 1 | |a Bloomfield, P. |e Verfasser |4 aut | |
810 | 2 | |a Department of Statistics: [Technical report / 2] |t Princeton University |v 13 |w (DE-604)BV009956042 |9 13 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006598010 |
Datensatz im Suchindex
_version_ | 1804124327235289089 |
---|---|
any_adam_object | |
author | Anderssen, R. S. Bloomfield, P. |
author_facet | Anderssen, R. S. Bloomfield, P. |
author_role | aut aut |
author_sort | Anderssen, R. S. |
author_variant | r s a rs rsa p b pb |
building | Verbundindex |
bvnumber | BV009956056 |
ctrlnum | (OCoLC)227677590 (DE-599)BVBBV009956056 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01776nam a2200457 cb4500</leader><controlfield tag="001">BV009956056</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20000303 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">941220s1972 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227677590</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009956056</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Anderssen, R. S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the numerical differentiation of dfata</subfield><subfield code="c">R. S. Anderssen and P. Bloomfield</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="c">1972</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">111 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Princeton University / Department of Statistics: [Technical report / 2]</subfield><subfield code="v">13</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">The differentiation of data numerically divides naturally into two distinct problems: (i) the differentiation of exact data, and (ii) the differentiation of non-exact (experimental) data. In the report, the authors examine both problems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NUMERICAL DIFFERENTIATION</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SPECTRUM ANALYSIS</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analytic functions</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Approximation(mathematics)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer programs</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integral equations</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Interpolation</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Least squares method</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polynomials</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Regression analysis</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistical data</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistics and Probability</subfield><subfield code="2">scgdst</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Taylors series</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Time series analysis</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bloomfield, P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Statistics: [Technical report / 2]</subfield><subfield code="t">Princeton University</subfield><subfield code="v">13</subfield><subfield code="w">(DE-604)BV009956042</subfield><subfield code="9">13</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006598010</subfield></datafield></record></collection> |
id | DE-604.BV009956056 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:43:54Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006598010 |
oclc_num | 227677590 |
open_access_boolean | |
physical | 111 S. |
publishDate | 1972 |
publishDateSearch | 1972 |
publishDateSort | 1972 |
record_format | marc |
series2 | Princeton University / Department of Statistics: [Technical report / 2] |
spelling | Anderssen, R. S. Verfasser aut On the numerical differentiation of dfata R. S. Anderssen and P. Bloomfield Princeton, NJ 1972 111 S. txt rdacontent n rdamedia nc rdacarrier Princeton University / Department of Statistics: [Technical report / 2] 13 The differentiation of data numerically divides naturally into two distinct problems: (i) the differentiation of exact data, and (ii) the differentiation of non-exact (experimental) data. In the report, the authors examine both problems. NUMERICAL DIFFERENTIATION SPECTRUM ANALYSIS Analytic functions dtict Approximation(mathematics) dtict Computer programs dtict Differential equations dtict Integral equations dtict Interpolation dtict Least squares method dtict Polynomials dtict Regression analysis dtict Statistical data dtict Statistics and Probability scgdst Taylors series dtict Time series analysis dtict Bloomfield, P. Verfasser aut Department of Statistics: [Technical report / 2] Princeton University 13 (DE-604)BV009956042 13 |
spellingShingle | Anderssen, R. S. Bloomfield, P. On the numerical differentiation of dfata NUMERICAL DIFFERENTIATION SPECTRUM ANALYSIS Analytic functions dtict Approximation(mathematics) dtict Computer programs dtict Differential equations dtict Integral equations dtict Interpolation dtict Least squares method dtict Polynomials dtict Regression analysis dtict Statistical data dtict Statistics and Probability scgdst Taylors series dtict Time series analysis dtict |
title | On the numerical differentiation of dfata |
title_auth | On the numerical differentiation of dfata |
title_exact_search | On the numerical differentiation of dfata |
title_full | On the numerical differentiation of dfata R. S. Anderssen and P. Bloomfield |
title_fullStr | On the numerical differentiation of dfata R. S. Anderssen and P. Bloomfield |
title_full_unstemmed | On the numerical differentiation of dfata R. S. Anderssen and P. Bloomfield |
title_short | On the numerical differentiation of dfata |
title_sort | on the numerical differentiation of dfata |
topic | NUMERICAL DIFFERENTIATION SPECTRUM ANALYSIS Analytic functions dtict Approximation(mathematics) dtict Computer programs dtict Differential equations dtict Integral equations dtict Interpolation dtict Least squares method dtict Polynomials dtict Regression analysis dtict Statistical data dtict Statistics and Probability scgdst Taylors series dtict Time series analysis dtict |
topic_facet | NUMERICAL DIFFERENTIATION SPECTRUM ANALYSIS Analytic functions Approximation(mathematics) Computer programs Differential equations Integral equations Interpolation Least squares method Polynomials Regression analysis Statistical data Statistics and Probability Taylors series Time series analysis |
volume_link | (DE-604)BV009956042 |
work_keys_str_mv | AT anderssenrs onthenumericaldifferentiationofdfata AT bloomfieldp onthenumericaldifferentiationofdfata |