Nonlinear equations arising in deferred correction of initial value problems:
Nonlinear equations arising in the deferred correction method for initial value problems are related to advanced multi-step methods. Such methods are shown to be stable in the usual norm if the usual condition of stability for the approximation to the highest order differential term is satisfied. (A...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Madison, Wisconsin
1968 circa
|
Schriftenreihe: | Mathematics Research Center <Madison, Wis.>: MRC technical summary report
818 |
Schlagworte: | |
Zusammenfassung: | Nonlinear equations arising in the deferred correction method for initial value problems are related to advanced multi-step methods. Such methods are shown to be stable in the usual norm if the usual condition of stability for the approximation to the highest order differential term is satisfied. (Author). |
Beschreibung: | 11 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009899069 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 941115s1968 |||| 00||| engod | ||
035 | |a (OCoLC)227486700 | ||
035 | |a (DE-599)BVBBV009899069 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Daniel, James W. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Nonlinear equations arising in deferred correction of initial value problems |
264 | 1 | |a Madison, Wisconsin |c 1968 circa | |
300 | |a 11 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Mathematics Research Center <Madison, Wis.>: MRC technical summary report |v 818 | |
520 | 3 | |a Nonlinear equations arising in the deferred correction method for initial value problems are related to advanced multi-step methods. Such methods are shown to be stable in the usual norm if the usual condition of stability for the approximation to the highest order differential term is satisfied. (Author). | |
650 | 4 | |a MULTISTEP METHODS | |
650 | 7 | |a (Boundary value problems |2 dtict | |
650 | 7 | |a Approximation(mathematics) |2 dtict | |
650 | 7 | |a Differential equations |2 dtict | |
650 | 7 | |a Iterations |2 dtict | |
650 | 7 | |a Mapping(transformations) |2 dtict | |
650 | 7 | |a Nonlinear systems |2 dtict | |
650 | 7 | |a Numerical methods and procedures) |2 dtict | |
650 | 7 | |a Operators(mathematics) |2 dtict | |
650 | 7 | |a Theorems |2 dtict | |
650 | 7 | |a Theoretical Mathematics |2 scgdst | |
650 | 7 | |a Vector spaces |2 dtict | |
830 | 0 | |a Mathematics Research Center <Madison, Wis.>: MRC technical summary report |v 818 |w (DE-604)BV002809217 |9 818 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006555804 |
Datensatz im Suchindex
_version_ | 1804124259864281088 |
---|---|
any_adam_object | |
author | Daniel, James W. |
author_facet | Daniel, James W. |
author_role | aut |
author_sort | Daniel, James W. |
author_variant | j w d jw jwd |
building | Verbundindex |
bvnumber | BV009899069 |
ctrlnum | (OCoLC)227486700 (DE-599)BVBBV009899069 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01732nam a2200421 cb4500</leader><controlfield tag="001">BV009899069</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">941115s1968 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227486700</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009899069</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Daniel, James W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear equations arising in deferred correction of initial value problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Madison, Wisconsin</subfield><subfield code="c">1968 circa</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics Research Center <Madison, Wis.>: MRC technical summary report</subfield><subfield code="v">818</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Nonlinear equations arising in the deferred correction method for initial value problems are related to advanced multi-step methods. Such methods are shown to be stable in the usual norm if the usual condition of stability for the approximation to the highest order differential term is satisfied. (Author).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MULTISTEP METHODS</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">(Boundary value problems</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Approximation(mathematics)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Iterations</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mapping(transformations)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear systems</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerical methods and procedures)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Operators(mathematics)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Theorems</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Theoretical Mathematics</subfield><subfield code="2">scgdst</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vector spaces</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics Research Center <Madison, Wis.>: MRC technical summary report</subfield><subfield code="v">818</subfield><subfield code="w">(DE-604)BV002809217</subfield><subfield code="9">818</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006555804</subfield></datafield></record></collection> |
id | DE-604.BV009899069 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:42:50Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006555804 |
oclc_num | 227486700 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 11 S. |
publishDate | 1968 |
publishDateSearch | 1968 |
publishDateSort | 1968 |
record_format | marc |
series | Mathematics Research Center <Madison, Wis.>: MRC technical summary report |
series2 | Mathematics Research Center <Madison, Wis.>: MRC technical summary report |
spelling | Daniel, James W. Verfasser aut Nonlinear equations arising in deferred correction of initial value problems Madison, Wisconsin 1968 circa 11 S. txt rdacontent n rdamedia nc rdacarrier Mathematics Research Center <Madison, Wis.>: MRC technical summary report 818 Nonlinear equations arising in the deferred correction method for initial value problems are related to advanced multi-step methods. Such methods are shown to be stable in the usual norm if the usual condition of stability for the approximation to the highest order differential term is satisfied. (Author). MULTISTEP METHODS (Boundary value problems dtict Approximation(mathematics) dtict Differential equations dtict Iterations dtict Mapping(transformations) dtict Nonlinear systems dtict Numerical methods and procedures) dtict Operators(mathematics) dtict Theorems dtict Theoretical Mathematics scgdst Vector spaces dtict Mathematics Research Center <Madison, Wis.>: MRC technical summary report 818 (DE-604)BV002809217 818 |
spellingShingle | Daniel, James W. Nonlinear equations arising in deferred correction of initial value problems Mathematics Research Center <Madison, Wis.>: MRC technical summary report MULTISTEP METHODS (Boundary value problems dtict Approximation(mathematics) dtict Differential equations dtict Iterations dtict Mapping(transformations) dtict Nonlinear systems dtict Numerical methods and procedures) dtict Operators(mathematics) dtict Theorems dtict Theoretical Mathematics scgdst Vector spaces dtict |
title | Nonlinear equations arising in deferred correction of initial value problems |
title_auth | Nonlinear equations arising in deferred correction of initial value problems |
title_exact_search | Nonlinear equations arising in deferred correction of initial value problems |
title_full | Nonlinear equations arising in deferred correction of initial value problems |
title_fullStr | Nonlinear equations arising in deferred correction of initial value problems |
title_full_unstemmed | Nonlinear equations arising in deferred correction of initial value problems |
title_short | Nonlinear equations arising in deferred correction of initial value problems |
title_sort | nonlinear equations arising in deferred correction of initial value problems |
topic | MULTISTEP METHODS (Boundary value problems dtict Approximation(mathematics) dtict Differential equations dtict Iterations dtict Mapping(transformations) dtict Nonlinear systems dtict Numerical methods and procedures) dtict Operators(mathematics) dtict Theorems dtict Theoretical Mathematics scgdst Vector spaces dtict |
topic_facet | MULTISTEP METHODS (Boundary value problems Approximation(mathematics) Differential equations Iterations Mapping(transformations) Nonlinear systems Numerical methods and procedures) Operators(mathematics) Theorems Theoretical Mathematics Vector spaces |
volume_link | (DE-604)BV002809217 |
work_keys_str_mv | AT danieljamesw nonlinearequationsarisingindeferredcorrectionofinitialvalueproblems |