Matrices similar on a Zariski-open set:
Theorems due to Wasow and Ostrowski concerning the similarity of matrices whose elements are holomorphic functions are generalized to the case of matrices whose elements lie in an arbitrary commutative integral domain. The chief tool for this generalization is the Zariski topology. The integral doma...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Madison, Wisconsin
1964
|
Schriftenreihe: | Mathematics Research Center <Madison, Wis.>: MRC technical summary report
449 |
Schlagworte: | |
Zusammenfassung: | Theorems due to Wasow and Ostrowski concerning the similarity of matrices whose elements are holomorphic functions are generalized to the case of matrices whose elements lie in an arbitrary commutative integral domain. The chief tool for this generalization is the Zariski topology. The integral domain consisting of certain functions on a topological space is an interesting special case. (Author). |
Beschreibung: | 18 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009898813 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 941115s1964 |||| 00||| engod | ||
035 | |a (OCoLC)227328705 | ||
035 | |a (DE-599)BVBBV009898813 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Ohm, Jack |e Verfasser |4 aut | |
245 | 1 | 0 | |a Matrices similar on a Zariski-open set |c Jack Ohm and Hans Schneider |
264 | 1 | |a Madison, Wisconsin |c 1964 | |
300 | |a 18 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Mathematics Research Center <Madison, Wis.>: MRC technical summary report |v 449 | |
520 | 3 | |a Theorems due to Wasow and Ostrowski concerning the similarity of matrices whose elements are holomorphic functions are generalized to the case of matrices whose elements lie in an arbitrary commutative integral domain. The chief tool for this generalization is the Zariski topology. The integral domain consisting of certain functions on a topological space is an interesting special case. (Author). | |
650 | 4 | |a ABSTRACT ALGEBRA | |
650 | 7 | |a (Matrices(mathematics) |2 dtict | |
650 | 7 | |a Algebraic geometry) |2 dtict | |
650 | 7 | |a Algebraic topology |2 dtict | |
650 | 7 | |a Topology |2 dtict | |
700 | 1 | |a Schneider, Hans |e Verfasser |4 aut | |
830 | 0 | |a Mathematics Research Center <Madison, Wis.>: MRC technical summary report |v 449 |w (DE-604)BV002809217 |9 449 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006555577 |
Datensatz im Suchindex
_version_ | 1804124259475259392 |
---|---|
any_adam_object | |
author | Ohm, Jack Schneider, Hans |
author_facet | Ohm, Jack Schneider, Hans |
author_role | aut aut |
author_sort | Ohm, Jack |
author_variant | j o jo h s hs |
building | Verbundindex |
bvnumber | BV009898813 |
ctrlnum | (OCoLC)227328705 (DE-599)BVBBV009898813 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01525nam a2200349 cb4500</leader><controlfield tag="001">BV009898813</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">941115s1964 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227328705</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009898813</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ohm, Jack</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Matrices similar on a Zariski-open set</subfield><subfield code="c">Jack Ohm and Hans Schneider</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Madison, Wisconsin</subfield><subfield code="c">1964</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">18 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics Research Center <Madison, Wis.>: MRC technical summary report</subfield><subfield code="v">449</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Theorems due to Wasow and Ostrowski concerning the similarity of matrices whose elements are holomorphic functions are generalized to the case of matrices whose elements lie in an arbitrary commutative integral domain. The chief tool for this generalization is the Zariski topology. The integral domain consisting of certain functions on a topological space is an interesting special case. (Author).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ABSTRACT ALGEBRA</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">(Matrices(mathematics)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraic geometry)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraic topology</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topology</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schneider, Hans</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics Research Center <Madison, Wis.>: MRC technical summary report</subfield><subfield code="v">449</subfield><subfield code="w">(DE-604)BV002809217</subfield><subfield code="9">449</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006555577</subfield></datafield></record></collection> |
id | DE-604.BV009898813 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:42:49Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006555577 |
oclc_num | 227328705 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 18 S. |
publishDate | 1964 |
publishDateSearch | 1964 |
publishDateSort | 1964 |
record_format | marc |
series | Mathematics Research Center <Madison, Wis.>: MRC technical summary report |
series2 | Mathematics Research Center <Madison, Wis.>: MRC technical summary report |
spelling | Ohm, Jack Verfasser aut Matrices similar on a Zariski-open set Jack Ohm and Hans Schneider Madison, Wisconsin 1964 18 S. txt rdacontent n rdamedia nc rdacarrier Mathematics Research Center <Madison, Wis.>: MRC technical summary report 449 Theorems due to Wasow and Ostrowski concerning the similarity of matrices whose elements are holomorphic functions are generalized to the case of matrices whose elements lie in an arbitrary commutative integral domain. The chief tool for this generalization is the Zariski topology. The integral domain consisting of certain functions on a topological space is an interesting special case. (Author). ABSTRACT ALGEBRA (Matrices(mathematics) dtict Algebraic geometry) dtict Algebraic topology dtict Topology dtict Schneider, Hans Verfasser aut Mathematics Research Center <Madison, Wis.>: MRC technical summary report 449 (DE-604)BV002809217 449 |
spellingShingle | Ohm, Jack Schneider, Hans Matrices similar on a Zariski-open set Mathematics Research Center <Madison, Wis.>: MRC technical summary report ABSTRACT ALGEBRA (Matrices(mathematics) dtict Algebraic geometry) dtict Algebraic topology dtict Topology dtict |
title | Matrices similar on a Zariski-open set |
title_auth | Matrices similar on a Zariski-open set |
title_exact_search | Matrices similar on a Zariski-open set |
title_full | Matrices similar on a Zariski-open set Jack Ohm and Hans Schneider |
title_fullStr | Matrices similar on a Zariski-open set Jack Ohm and Hans Schneider |
title_full_unstemmed | Matrices similar on a Zariski-open set Jack Ohm and Hans Schneider |
title_short | Matrices similar on a Zariski-open set |
title_sort | matrices similar on a zariski open set |
topic | ABSTRACT ALGEBRA (Matrices(mathematics) dtict Algebraic geometry) dtict Algebraic topology dtict Topology dtict |
topic_facet | ABSTRACT ALGEBRA (Matrices(mathematics) Algebraic geometry) Algebraic topology Topology |
volume_link | (DE-604)BV002809217 |
work_keys_str_mv | AT ohmjack matricessimilaronazariskiopenset AT schneiderhans matricessimilaronazariskiopenset |