Single-element tearing and modification of sparse symmetric systems:
Tearing and modification obtains the solution of a linear system synthetically by first solving a slightly different (torn) system and then modifying that solution. The authors show that single-element tearing of symmetric systems is rarely advantageous when the modified system is solved by eliminat...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Ithaca, New York
1972
|
Schriftenreihe: | Cornell University <Ithaca, NY> / Department of Computer Science: Technical report
1150 |
Schlagworte: | |
Zusammenfassung: | Tearing and modification obtains the solution of a linear system synthetically by first solving a slightly different (torn) system and then modifying that solution. The authors show that single-element tearing of symmetric systems is rarely advantageous when the modified system is solved by elimination, and the authors classify those systems for which it is advantageous. (Author). |
Beschreibung: | 17 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009875038 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 941103s1972 |||| 00||| engod | ||
035 | |a (OCoLC)227693899 | ||
035 | |a (DE-599)BVBBV009875038 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Bunch, James R. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Single-element tearing and modification of sparse symmetric systems |c James R. Bunch and Donald G. Rose |
264 | 1 | |a Ithaca, New York |c 1972 | |
300 | |a 17 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Cornell University <Ithaca, NY> / Department of Computer Science: Technical report |v 1150 | |
520 | 3 | |a Tearing and modification obtains the solution of a linear system synthetically by first solving a slightly different (torn) system and then modifying that solution. The authors show that single-element tearing of symmetric systems is rarely advantageous when the modified system is solved by elimination, and the authors classify those systems for which it is advantageous. (Author). | |
650 | 4 | |a DECOMPOSITION METHOD | |
650 | 4 | |a SPARSE MATRIX | |
650 | 4 | |a SYMMETRY | |
650 | 7 | |a (Matrices(mathematics) |2 dtict | |
650 | 7 | |a Numerical analysis) |2 dtict | |
650 | 7 | |a Theorems |2 dtict | |
650 | 7 | |a Theoretical Mathematics |2 scgdst | |
700 | 1 | |a Rose, Donald J. |e Verfasser |4 aut | |
810 | 2 | |a Department of Computer Science: Technical report |t Cornell University <Ithaca, NY> |v 1150 |w (DE-604)BV006185504 |9 1150 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006540866 |
Datensatz im Suchindex
_version_ | 1804124235469160448 |
---|---|
any_adam_object | |
author | Bunch, James R. Rose, Donald J. |
author_facet | Bunch, James R. Rose, Donald J. |
author_role | aut aut |
author_sort | Bunch, James R. |
author_variant | j r b jr jrb d j r dj djr |
building | Verbundindex |
bvnumber | BV009875038 |
ctrlnum | (OCoLC)227693899 (DE-599)BVBBV009875038 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01633nam a2200373 cb4500</leader><controlfield tag="001">BV009875038</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">941103s1972 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227693899</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009875038</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bunch, James R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Single-element tearing and modification of sparse symmetric systems</subfield><subfield code="c">James R. Bunch and Donald G. Rose</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Ithaca, New York</subfield><subfield code="c">1972</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">17 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cornell University <Ithaca, NY> / Department of Computer Science: Technical report</subfield><subfield code="v">1150</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Tearing and modification obtains the solution of a linear system synthetically by first solving a slightly different (torn) system and then modifying that solution. The authors show that single-element tearing of symmetric systems is rarely advantageous when the modified system is solved by elimination, and the authors classify those systems for which it is advantageous. (Author).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DECOMPOSITION METHOD</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SPARSE MATRIX</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SYMMETRY</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">(Matrices(mathematics)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerical analysis)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Theorems</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Theoretical Mathematics</subfield><subfield code="2">scgdst</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rose, Donald J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Technical report</subfield><subfield code="t">Cornell University <Ithaca, NY></subfield><subfield code="v">1150</subfield><subfield code="w">(DE-604)BV006185504</subfield><subfield code="9">1150</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006540866</subfield></datafield></record></collection> |
id | DE-604.BV009875038 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:42:26Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006540866 |
oclc_num | 227693899 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 17 S. |
publishDate | 1972 |
publishDateSearch | 1972 |
publishDateSort | 1972 |
record_format | marc |
series2 | Cornell University <Ithaca, NY> / Department of Computer Science: Technical report |
spelling | Bunch, James R. Verfasser aut Single-element tearing and modification of sparse symmetric systems James R. Bunch and Donald G. Rose Ithaca, New York 1972 17 S. txt rdacontent n rdamedia nc rdacarrier Cornell University <Ithaca, NY> / Department of Computer Science: Technical report 1150 Tearing and modification obtains the solution of a linear system synthetically by first solving a slightly different (torn) system and then modifying that solution. The authors show that single-element tearing of symmetric systems is rarely advantageous when the modified system is solved by elimination, and the authors classify those systems for which it is advantageous. (Author). DECOMPOSITION METHOD SPARSE MATRIX SYMMETRY (Matrices(mathematics) dtict Numerical analysis) dtict Theorems dtict Theoretical Mathematics scgdst Rose, Donald J. Verfasser aut Department of Computer Science: Technical report Cornell University <Ithaca, NY> 1150 (DE-604)BV006185504 1150 |
spellingShingle | Bunch, James R. Rose, Donald J. Single-element tearing and modification of sparse symmetric systems DECOMPOSITION METHOD SPARSE MATRIX SYMMETRY (Matrices(mathematics) dtict Numerical analysis) dtict Theorems dtict Theoretical Mathematics scgdst |
title | Single-element tearing and modification of sparse symmetric systems |
title_auth | Single-element tearing and modification of sparse symmetric systems |
title_exact_search | Single-element tearing and modification of sparse symmetric systems |
title_full | Single-element tearing and modification of sparse symmetric systems James R. Bunch and Donald G. Rose |
title_fullStr | Single-element tearing and modification of sparse symmetric systems James R. Bunch and Donald G. Rose |
title_full_unstemmed | Single-element tearing and modification of sparse symmetric systems James R. Bunch and Donald G. Rose |
title_short | Single-element tearing and modification of sparse symmetric systems |
title_sort | single element tearing and modification of sparse symmetric systems |
topic | DECOMPOSITION METHOD SPARSE MATRIX SYMMETRY (Matrices(mathematics) dtict Numerical analysis) dtict Theorems dtict Theoretical Mathematics scgdst |
topic_facet | DECOMPOSITION METHOD SPARSE MATRIX SYMMETRY (Matrices(mathematics) Numerical analysis) Theorems Theoretical Mathematics |
volume_link | (DE-604)BV006185504 |
work_keys_str_mv | AT bunchjamesr singleelementtearingandmodificationofsparsesymmetricsystems AT rosedonaldj singleelementtearingandmodificationofsparsesymmetricsystems |