Supernovae: Les Houches, 31 juillet - 1 septembre 1990
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | Undetermined |
Veröffentlicht: |
Amsterdam u.a.
North-Holland
1994
|
Schriftenreihe: | École d'Été de Physique Théorique <LesHouches>: Session
54 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXV, 842 S. Ill. |
ISBN: | 0444814744 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009772562 | ||
003 | DE-604 | ||
005 | 19960228 | ||
007 | t | ||
008 | 940823s1994 a||| |||| 10||| undod | ||
020 | |a 0444814744 |9 0-444-81474-4 | ||
035 | |a (OCoLC)165216075 | ||
035 | |a (DE-599)BVBBV009772562 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | |a und | ||
049 | |a DE-12 |a DE-91G | ||
084 | |a PHY 962f |2 stub | ||
245 | 1 | 0 | |a Supernovae |b Les Houches, 31 juillet - 1 septembre 1990 |c éd. par S. A. Bludman ... |
264 | 1 | |a Amsterdam u.a. |b North-Holland |c 1994 | |
300 | |a XXXV, 842 S. |b Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a École d'Été de Physique Théorique <LesHouches>: Session |v 54 | |
650 | 0 | 7 | |a Supernova |0 (DE-588)4184117-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 1990 |z Les Houches |2 gnd-content | |
689 | 0 | 0 | |a Supernova |0 (DE-588)4184117-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Bludman, Sidney A. |e Sonstige |0 (DE-588)128680709 |4 oth | |
830 | 0 | |a École d'Été de Physique Théorique <LesHouches>: Session |v 54 |w (DE-604)BV000022608 |9 54 | |
856 | 4 | 2 | |m Digitalisierung TU Muenchen |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006465398&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-006465398 |
Datensatz im Suchindex
_version_ | 1804124120526356480 |
---|---|
adam_text | CONTENTS
Lecturers
Participants
Préface
Preface
Contents
xix
Course
1.
The frequency of
supernovae,
by G.A. Tammann
1.
Introduction
2.
The data
2.1.
The sample of galaxies
2.2.
The sample of
SNe
3.
Relative
SN
rates
3.1.
The radial distance effect
3.2.
The inclination effect
3.3.
SN rates as function of galaxian blue luminosity
3.4.
SN rates as function of galaxian far-infrared luminosity
3.5.
SN rates as function of galaxian Ha flux
3.6.
Are there fast supernova producers?
3.7.
Relative SN frequencies
4.
Absolute SN frequencies
4.1.
The Asagio search
4.2.
The search by the Rev. Evans
4.3.
The adopted SN frequencies
4.4.
The frequency of core collapse
SNe
as function of the FIR flux
4.5.
The frequency of core collapse
SNe
as function of the Ha flux
4
5
5
6
8
8
9
10
11
12
13
14
18
19
20
21
23
23
5.
Supernova frequencies in the Local Group
25
5.1.
Our Galaxy
25
5.2.
Other Local Group galaxies
26
References
28
Course
2.
Late stages of stellar evolution,
by Zalman
Barkat
31
1.
Introduction
34
2.
Core-envelope separation
34
3.
Evolution of carbon-oxygen stars
35
3.1.
Regioni
37
3.2.
Region II
38
3.3.
Region HI
47
3.4.
Region IV
48
4.
Growing stellar cores
-
intermediate mass stars
49
References
60
Course
3.
Massive stars,
supernovae,
and nucleosynthesis,
by S.E. Woosley and
ТЛ.
Weaver
63
Ì.
The evolution of massive stars
66
1.1.
The physics of the calculation
66
1.2.
A brief overview of massive stellar evolution
73
1.3.
Stars in the mass range
15
to
80
M©
77
1.4.
The path to instability and neutron-star masses
83
2.
Type
Π
supernovae
88
2.1.
Core collapse and bounce
88
2.2.
Delayed explosions
90
2.2.1.
An overview and some general comments
90
2.2.2.
Energy absorbing and emitting processes
95
2.3.
Shock propagation and break out
102
2.4.
Light curves of type
Π
supernovae
102
2.5.
X-ray and 7-ray emission
103
3.
Type I
supernovae
106
3.1.
Type la
106
3.1.1.
Some general considerations
108
3.1.2.
Deflagration flame physics
110
3.1.3.
Attempts to improve on the standard model
113
3.2.
Accretion-induced collapse
120
3.3.
Type Ib
supernovae
122
xxiv
4. Explosive
nucleosynthesis
in supernovae
of type II
and Ib
127
4.1.
Parameterized explosive nucleosynthesis
128
4.2.
The neutrino-nucleosynthesis process
135
4.3.
Nucleosynthesis of26
Al
139
4.4.
The
α
-rich freeze-out and the r-process
144
References
151
Course
4,
Type
Ia supernovae,
white dwarfs and neutron
stars, by R. Canal
155
1.
Introduction
158
2.
The progenitors of type
Ia supernovae
159
2.1.
Observational constraints
159
2.2.
SN la rates and progenitor population
160
2.3.
Progenitor evolution: mass-accreting C+O white dwarfs
161
2.3.1.
H-accreting white dwarfs
163
2.3.2.
He-accreting white dwarfs
166
2.3.3.
C+O-accreting white dwarfs
166
2.4.
Galactic evolution of SN la progenitors
168
3.
White dwarf physics and type
Ia supernovae
169
3.1.
The cooling of white dwarfs
169
3.2.
The physics of phase transition in white dwarf interiors
170
3.3.
Nuclear reaction rates
173
3.4.
Mass accretion and core heating
175
3.5.
Core ignition and burning propagation
178
3.6.
Electron captures and mixing
181
4.
Neutron stars in binary systems
185
4.1.
X-ray binaries
185
4.1.1.
High-mass X-ray binaries
185
4.1.2.
Low-mass X-ray binaries
186
4.2.
Binary and millisecond pulsars
186
4.3.
Formation mechanisms
187
4.3.1.
Core collapse of massive stars
187
4.3.2.
Capture mechanisms
187
4.3.3.
Accretion-induced collapse of white dwarfs
І89
4.4.
The origin of neutron stars in binaries
189
4.4.1.
High-mass X-ray binaries
189
4.4.2.
Low-mass X-ray binaries
190
4.4.3.
Binary and millisecond pulsars
192
xxv
5.
Summary
194
References
195
Course
5.
Type I
supernovae
and evolution of interacting
binaries, by K. Nomoto, H. Yamaoka, T. Shigeya-
ma, S. Kumagai and T. Tsujimoto
199
1.
Type I
supernovae
and related events
202
2.
Evolution of accreting white dwarfs
204
2.1.
Hydrogen shell flashes
205
2.2.
Helium shell flashes
210
2.3.
Merging C+O white dwarfs
212
3.
Type
Ia supernovae
213
3.1.
Carbon deflagration model
213
3.2.
Deflagration/detonation hybrid models
215
3.3.
Carbon detonation in smaller-mass white dwarfs
218
3.4.
Light curves
219
3.5.
Spectra
223
4.
Accretion-induced collapse of white dwarfs
225
4.1.
Low-mass X-ray binaries and binary pulsars
225
4.2.
Solid C+O white dwarfs
226
4.3.
O+Ne+Mg white dwarfs
227
4.4.
Conditions for accretion-induced collapse
230
5.
Type Ib/Ic
supernovae
232
5.1.
Evolution of interacting binaries
233
5.2.
Nucleosynthesis
234
5.3.
Rayleigh—Taylor instabilities and mixing
235
5.4.
Light curves
238
6.
Evolutionary origin of binary pulsars
241
7.
Concluding remarks
245
References
246
Course
6.
Models of type II
supernovae:
an introduction,
by Wolfgang Hillebrandt
251
1
.
Introduction and statement of the problem
254
2.
Observations of type
E supernovae
255
3.
Input
physics
261
3.1.
The basic equations
262
3.2.
Initial models
263
3.3.
The equation of state of supernova matter
264
3.3.1.
The low density EOS
265
3.3.2.
Self-consistent single-particle models
269
3.4.
Weak interaction rates and neutrino transport
275
4.
Hydrodynamics (one-dimensional)
281
4.1.
Newtonian physics
28 í
4.2.
General relativistic hydrodynamics
286
5.
Core collapse supernova models and their problems
287
5.1.
An analytic description of core collapse
287
5.2.
Numerical simulations and their main results
290
6.
Summary, conclusions, and outlook
295
References
297
Course
7.
The neutrino signal from a collapsing star,
by D.K. Nadyozhin
301
1.
The neutrino signal from a collapsing star
304
1.1.
Introduction
304
1.2.
The neutrino radiation immediately before the beginning of the collapse
304
1.3.
Simple estimates of the neutrino signal properties
307
1.4.
Detailed calculations of the neutrino signal
З і З
1.5.
The neutrino signal from Supernova
1987
A
320
1.6.
Conclusions
322
2.
The neutrino heat conduction theory
325
2.1.
Introduction
325
2.2.
The neutrino transfer equation, stimulated absorption and the neutrino
Kirchhoff
law
326
2.3.
The elements of neutrino hydrodynamics
331
2.4.
The neutrino heat conduction approximation
335
2.5.
The kinetics of beta-processes and
lepton
charge diffusion
337
2.6.
Conclusions
341
Course
8.
Nuclear physics of hot dense matter,
by D. Vautherin
345
I. Introduction
348
xxvii
2.
The phase diagram of hot nuclear matter
349
2.1.
Effective nucleon-nucleon interactions
349
2.2.
A simplified Skyrme interaction
350
2.3.
Mean-field equations at finite temperature
351
2.4.
Solution for hot nuclear matter
352
2.5.
Cold nuclear matter
353
2.6.
High-temperature limit
354
2.7.
Phase diagram of nuclear matter
355
2.8.
The compound nucleus model of Bonche and
Levit
356
2.9.
An approximate calculation of the limiting temperature
357
3.
Equation of state at subnuclear densities
360
3.1.
Introduction
360
3.2.
Macroscopic approaches
360
3.3.
Microscopic methods: the Wigner—Seitz approximation
362
3.4.
The bulk matter approximation
363
3.5.
Approximate solution of the equilibrium equations
364
3.6.
The compressible liquid drop model
368
3.7.
Thomas-Fermi calculations
370
3.8.
Hartree—
Fock calculations
371
3.9.
Sub-saturation phases of nuclear matter
372
4.
Beyond nuclear density
375
4.1.
Non-relativistic many-body calculations
375
4.2.
Relativistic mean-field calculations
377
4.3.
Density dependent relativistic corrections
381
4.4.
Relativistic Brueckner-Hartree-Fock calculations
382
4.5.
Many-body calculations with relativistic corrections
383
4.6.
Experimental studies of the equation of state
385
5.
Discussion
388
References
389
Course
9.
Multidimensional hydrodynamical simulations
of supernova explosions, by
Ewald Müller 393
1.
Introduction
397
2.
Numerical methods
398
2.1.
Lagrangian and Eulerian methods
399
2.2.
Explicit and implicit methods
400
2.3.
Accuracy and efficiency
401
2.4.
Conservative difference schemes
403
23.
Operator splitting or fractional-step coupling
408
2.6.
Godunov-type difference methods
411
3.
Core collapse with
rotation
415
3.1.
Overview of expected effects
416
3.2.
Equilibrium sequences
420
3.3.
Hydrodynamical simulations
424
3.4.
Gravitational radiation from collapsing rotating cores
428
4.
Instabilities and mixing in type II supernova explosions
432
4.1.
Observational evidence from SN
1987
A
432
4.2.
Rayleigh-Taylor instability
433
4.3.
RT instabilities in supernova explosions
434
4.4.
Simulations of RT instabilities in polytropes
435
4.5.
Simulations of RT instabilities in realistic stellar models
435
4.5.1.
Numerical methods
436
4.5.2.
Initial models
438
4.5.3.
Linear stability analysis
439
4.5.4.
Results of two-dimensional simulations
441
4.5.5.
Results of three-dimensional simulations
444
4.5.6.
Mixing
446
4.5.7.
Implications
447
5.
Thermonuclear burning fronts and type
Ia supernovae
450
5.1.
General considerations
450
5.2.
Shockwaves
452
5.3.
Simple theory of steady plane detonations and deflagrations
455
5.4.
Detonations and type I supernova models
457
5.5.
Deflagrations and type I supernova models
461
5.6.
Hydrodynamics and nuclear burning
464
5.7.
Hydrodynamic simulations of detonations
468
5.7.1.
Detonations caused by
numerica!
errors
469
5.7.2.
Detonations with single exothermic reaction
473
5.7.3.
Detonation with
α
-network
476
References
484
Course
10.
Supernova
1987
A: from progenitor to remnant,
by K. Nomoto, T. Shigeyama, S. Kumagai, H. Ya-
maoka and T. Suzuki
489
1.
Introduction
493
2.
Progenitor
of SN
1987
A
494
2.1.
Observations
494
2.2.
Blue to red evolution and mass loss
494
2.3.
Red to blue evolution and mixing
496
2.4.
Lifetime in the HR diagram
500
2.5.
Presupernova
evolution of the core
501
2.5.1.
Quasi-static nuclear burning
502
2.5.2.
Presupernova
composition structure
502
3.
Explosive nucleosynthesis
504
3.1.
Explosive nuclear burning
504
3.2.
Isotopie
ratios and radioactive elements
508
3.3.
Comparison to the observed abundances in SN
1987
A
509
4.
Optical light curve
511
4.1.
Shock propagation and hydrodynamical structure
511
4.2.
Early light curve
515
4.3.
Hydrogen recombination front
519
4.4.
Radioactive decays, mixing of
Ni,
and
Bochum
event
521
4.5.
Plateau-like peak and hydrogen recombination
525
4.6.
Constraints on explosion energy
527
5.
X-ray light curve and clumpy mixing
528
5.
і
.
X-ray light curves at
і
< 300
d
529
5.2.
X-ray light curve at
t
> 300
d
and effects of clumps
529
5.3.
Gamma-ray light curves
531
5.4.
X-ray and
-γ
-ray
spectra
531
6.
Rayieigh-Taylor instabilities and mixing
535
6.1.
Linear stability analysis
535
6.2.
Two-dimensional hydrodynamic calculation
537
6.3.
Mixing
538
6.4.
Comparison with observations
541
7.
Dust formation
542
8.
Pulsar and other radioactive elements
546
8.1.
Contributions of 57Co and ^Ti
546
8.2.
Predicted line 7-rays
549
8.3.
Contribution of the pulsar
549
8.4.
Predicted hard radiation from the pulsar
551
8.5.
X-rays from the neutron star surface
554
xxx
9.
Soft X-ray emission and circumstellar matter
555
9.1.
Structure of circumstellar matter
555
9.2.
Soft X-ray flare and collision with a circumstellar cloud
558
9.3.
Collision with the red supergiant shell
559
9.4.
Collision with the ring
561
References
564
Course
11.
The shock wave breakout and the early super¬
nova hydrodynamics, by D.K. Nadyozhin
569
1.
The shock wave breakout and early supernova hydrodynamics
572
1.1.
Introduction
572
1.2.
Shock wave propagation through the stellar envelope
573
1.3.
The self-similar solution
575
1.4.
The peak parameters of the shock wave breakout
576
1.5.
The beginning of supernova envelope expansion and the transition to
in¬
erţial
outflow
579
1.6.
Cooling-and-recombination wave in supernova envelopes
582
1.7.
Conclusions
586
Course
12.
High energy emission of
supernovae
and some
additional remarks on supernova statistics, by
M. Cassé
and R. Lehoucq
589
1.
Theoretical tools
592
1.1.
Historical background
592
1.2.
Decay and production of radioactive nuclei
593
1.3.
Gamma ray-matter interaction
597
1.3.1.
Elementary processes
597
1.3.2.
Simple analytic treatment of the problem
599
1.3.3.
Observed spectrum
605
1.4.
Monte Carlo simulations
607
2.
Applications
608
2.1.
The case of SN 1987a
609
2.1.1.
Fit of the light curve
613
2.1.2.
Astrophysical consequences
618
2.1.3.
What about a central source?
619
2.2.
Gamma ray lines from other
supernovae
620
3.
Conclusion
623
xxxi
4.
Appendix
625
4.1.
Notation
625
4.2.
Fundamental
constants and units
625
References
626
Course
13.
Nucleosynthesis in
supernovae,
by
Friedrich-
Karl
Thielemann, Ken ichi Nomoto and Masaaki
Hashimoto
629
1.
Introduction
632
2.
Thermonuclear rates and reaction networks
632
2.1.
Thermonuclear reaction rates
632
2.2.
Nuclear reaction networks
635
3.
Nucleosynthesis
637
3.1.
Hydrostatic burning stages in
presupernova
evolution
637
3.2.
Explosive burning
639
3.2.1.
Explosive Si-burning
639
3.2.2.
Explosive O-burning
640
3.2.3.
Explosive
Ne, C,
and He-burning
641
3.2.4.
r-Process
641
3.2.5.
Explosive H-burning
642
3.3.
Nucleosynthesis in
supernovae
642
4.
Type
Ia supernovae
(SNe
la)
643
4.1.
Explosive burning conditions
643
4.2.
Abundances in
ejecta
645
5.
Type II
supernovae
(SNe
II)
646
5.1.
Basic features
648
5.2.
Detailed calculations
651
5.2.1.
SN 1987A
-
a
20
MQ star
651
5.2.2. 13,15,
and
25
M0 models
659
5.3.
Gross properties of
ejecta
660
6.
Averaged SN II abundance yields
667
7.
SN I and SN II contributions to nucleosynthesis
671
References
673
Course
14.
The late emission from
supernovae,
by
Claes
Fransson
677
1.
Introduction
680
2.
Hydrodynamical and chemical structure
681
XXXH
3.
Gamma-ray thermalization
685
3.1.
Radioactive input
685
3.2.
The gamma-ray spectrum
685
3.3.
Gamma-ray thermalization
686
3.4.
Electron thermalization
688
3.5.
Positrons
695
4.
Thermal and ionization equilibrium
696
5.
Line formation
700
6.
Plasma diagnostics
707
7.
The spectra of type II
supernovae
710
7.1.
The hydrogen envelope
710
7.2.
The helium mantle
716
7.3.
The oxygen core
717
7.4.
The iron core
724
8.
Type
Ia supernovae
726
9.
Mixing
726
10.
Formation of molecules
727
11.
Dust formation in
supernovae
729
12.
Effects of a neutron star
731
13.
Circumstellar excitation
734
14.
Conclusions
738
References
739
Course
15.
Supernovae
and the interstellar medium,
by Roger A. Chevalier
743
1.
Introduction
746
2.
Supernovae
746
3.
The interstellar medium
748
4.
Circumstellar environments
750
5.
Hydrodynamic evolution
752
6.
Circumstellar interaction
756
7.
X-ray and infrared emission from hot gas
759
8.
Shock wave emission and stability
762
9.
Future prospects
764
References
765
Seminar
1.
The search for
supernovae
at the
Observatoire
de la Côte
ď
Azur,
by Christian
Pollas
769
1.
Presentation
772
2.
The
SN
search
772
3.
The OCA
Schmidt
results
776
3.1.
What is my method?
776
3.2.
Some advice
779
4.
Must we continue?
784
References
786
Seminar
2.
General relativistic neutrino hydrodynamics
:
the
physics of and numerical techniques for model¬
ing stellar collapse and the early cooling of neu¬
tron stars, by Paul J.
Schinder 785
1.
Introduction
789
2.
General relativistic hydrodynamics
791
2.1.
Preliminaries
792
2.2.
The equations of polar sliced neutrino hydrodynamics
793
2.3.
Numerical techniques
795
2.4.
Summary
796
3.
General relativistic neutrino transport
796
3.1.
The role of neutrinos
796
3.2.
The neutrino transport equations
798
3.3.
The variable Eddington factor method
800
3.4.
Other transport treatments
802
4.
Neutrino interactions with the gas
803
4.1.
The basic neutrino interactions
803
4.2.
The interaction functions
G
and
L
805
5.
Conclusion
806
References
806
Seminar
3.
The chemical evolution of the galaxy,
by R. Schaeffer
809
1. Introduction
812
2.
Modelling gaiactic chemical evolution
814
2.1.
Star formation
814
2.2.
Supernova rate
814
2.3.
Evolution equation
815
3.
The sources of metals
816
3.1.
Mass ejection by winds
816
3.2.
Type I
supernovae
816
3.3.
Type II
supernovae
817
3.4.
Peculiar types of
supernovae
817
xxxiv
4.
History of galactic evolution modelling. Role of the
supernovae
820
References
823
Seminar
4.
Solar neutrinos: physics beyond the standard
model?, by Sidney A. Bludman
823
1.
Standard solar models: is there a solar neutrino problem?
826
1.1.
Predicted solar neutrino detection rates
826
1.2.
Time variation?
827
2.
Distinguishing new neutrino physics from solar model questions
828
2.1.
Neutrino oscillations
828
2.2. Parke
formula for ve persistence probability
831
2.3.
Neutrino spectral shape observed at Kamiokande II
833
2.4.
Total rates observed at Kamiokande II, Homestake and Sage
834
3.
Physics beyond the standard model
834
3.1.
Neutrino flavor mixing
835
3.2.
See-saw formula for light neutrino masses
836
3.3.
Extrapolation for the
r
neutrino mass
837
4.
Terrestrial searches for neutrino oscillations
837
5.
Conclusions
838
References
839
|
any_adam_object | 1 |
author_GND | (DE-588)128680709 |
building | Verbundindex |
bvnumber | BV009772562 |
classification_tum | PHY 962f |
ctrlnum | (OCoLC)165216075 (DE-599)BVBBV009772562 |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01450nam a2200349 cb4500</leader><controlfield tag="001">BV009772562</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19960228 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940823s1994 a||| |||| 10||| undod</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444814744</subfield><subfield code="9">0-444-81474-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)165216075</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009772562</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">und</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 962f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Supernovae</subfield><subfield code="b">Les Houches, 31 juillet - 1 septembre 1990</subfield><subfield code="c">éd. par S. A. Bludman ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam u.a.</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXV, 842 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">École d'Été de Physique Théorique <LesHouches>: Session</subfield><subfield code="v">54</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Supernova</subfield><subfield code="0">(DE-588)4184117-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1990</subfield><subfield code="z">Les Houches</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Supernova</subfield><subfield code="0">(DE-588)4184117-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bludman, Sidney A.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)128680709</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">École d'Été de Physique Théorique <LesHouches>: Session</subfield><subfield code="v">54</subfield><subfield code="w">(DE-604)BV000022608</subfield><subfield code="9">54</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung TU Muenchen</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006465398&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006465398</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 1990 Les Houches gnd-content |
genre_facet | Konferenzschrift 1990 Les Houches |
id | DE-604.BV009772562 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:40:37Z |
institution | BVB |
isbn | 0444814744 |
language | Undetermined |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006465398 |
oclc_num | 165216075 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM |
owner_facet | DE-12 DE-91G DE-BY-TUM |
physical | XXXV, 842 S. Ill. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | North-Holland |
record_format | marc |
series | École d'Été de Physique Théorique <LesHouches>: Session |
series2 | École d'Été de Physique Théorique <LesHouches>: Session |
spelling | Supernovae Les Houches, 31 juillet - 1 septembre 1990 éd. par S. A. Bludman ... Amsterdam u.a. North-Holland 1994 XXXV, 842 S. Ill. txt rdacontent n rdamedia nc rdacarrier École d'Été de Physique Théorique <LesHouches>: Session 54 Supernova (DE-588)4184117-7 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 1990 Les Houches gnd-content Supernova (DE-588)4184117-7 s DE-604 Bludman, Sidney A. Sonstige (DE-588)128680709 oth École d'Été de Physique Théorique <LesHouches>: Session 54 (DE-604)BV000022608 54 Digitalisierung TU Muenchen application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006465398&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Supernovae Les Houches, 31 juillet - 1 septembre 1990 École d'Été de Physique Théorique <LesHouches>: Session Supernova (DE-588)4184117-7 gnd |
subject_GND | (DE-588)4184117-7 (DE-588)1071861417 |
title | Supernovae Les Houches, 31 juillet - 1 septembre 1990 |
title_auth | Supernovae Les Houches, 31 juillet - 1 septembre 1990 |
title_exact_search | Supernovae Les Houches, 31 juillet - 1 septembre 1990 |
title_full | Supernovae Les Houches, 31 juillet - 1 septembre 1990 éd. par S. A. Bludman ... |
title_fullStr | Supernovae Les Houches, 31 juillet - 1 septembre 1990 éd. par S. A. Bludman ... |
title_full_unstemmed | Supernovae Les Houches, 31 juillet - 1 septembre 1990 éd. par S. A. Bludman ... |
title_short | Supernovae |
title_sort | supernovae les houches 31 juillet 1 septembre 1990 |
title_sub | Les Houches, 31 juillet - 1 septembre 1990 |
topic | Supernova (DE-588)4184117-7 gnd |
topic_facet | Supernova Konferenzschrift 1990 Les Houches |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006465398&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000022608 |
work_keys_str_mv | AT bludmansidneya supernovaeleshouches31juillet1septembre1990 |