Introduction to étale cohomology:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English German |
Veröffentlicht: |
Berlin u.a.
Springer
1994
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | IX, 186 S. grap. Darst. |
ISBN: | 0387571167 3540571167 9783540571162 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV009770669 | ||
003 | DE-604 | ||
005 | 20230216 | ||
007 | t | ||
008 | 940815s1994 gw |||| |||| 00||| eng d | ||
016 | 7 | |a 941525767 |2 DE-101 | |
020 | |a 0387571167 |9 0-387-57116-7 | ||
020 | |a 3540571167 |9 3-540-57116-7 | ||
020 | |a 9783540571162 |9 978-3-540-57116-2 | ||
035 | |a (OCoLC)30703628 | ||
035 | |a (DE-599)BVBBV009770669 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 1 | |a eng |h ger | |
044 | |a gw |c DE | ||
049 | |a DE-739 |a DE-355 |a DE-703 |a DE-384 |a DE-29T |a DE-19 |a DE-83 |a DE-11 |a DE-188 |a DE-706 | ||
050 | 0 | |a QA564 | |
082 | 0 | |a 514/.23 |2 20 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
084 | |a 14F20 |2 msc | ||
100 | 1 | |a Tamme, Günter |d 1937-2022 |e Verfasser |0 (DE-588)117726052 |4 aut | |
240 | 1 | 0 | |a Einführung in die étale Kohomologie |
245 | 1 | 0 | |a Introduction to étale cohomology |c Günter Tamme |
264 | 1 | |a Berlin u.a. |b Springer |c 1994 | |
300 | |a IX, 186 S. |b grap. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Universitext | |
650 | 7 | |a Cohomologie |2 gtt | |
650 | 7 | |a Faisceaux, théorie des |2 ram | |
650 | 7 | |a Géométrie algébrique |2 ram | |
650 | 7 | |a Homologie |2 gtt | |
650 | 7 | |a Homologie |2 ram | |
650 | 4 | |a Geometry, Algebraic | |
650 | 4 | |a Homology theory | |
650 | 4 | |a Sheaf theory | |
650 | 0 | 7 | |a Kohomologietheorie |0 (DE-588)4164610-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Etalkohomologie |0 (DE-588)4153071-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Etalkohomologie |0 (DE-588)4153071-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Kohomologietheorie |0 (DE-588)4164610-1 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-642-78421-7 |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006464506&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-006464506 |
Datensatz im Suchindex
_version_ | 1807506024030011392 |
---|---|
adam_text |
CONTENTS
CHAPTER
0.
PRELIMINARIES
.
1
§1.
ABELIAN
CATEGORIES
.
1
(1.1)
CATEGORIES
AND
FUNCTORS
.
1
(1.2)
ADDITIVE
CATEGORIES
.
3
(1.3)
ABELIAN
CATEGORIES
.
4
(1.4)
INJECTIVE
OBJECTS
.
6
§2.
HOMOLOGICAL
ALGEBRA
IN
ABELIAN
CATEGORIES
.
9
(2.1)
5-FUNCTORS
.
9
(2.2)
DERIVED
FUNCTORS
.
11
(2.3)
SPECTRAL
SEQUENCES
.
13
§3.
INDUCTIVE
LIMITS
.
17
(3.1)
LIMIT
FUNCTORS
.
17
(3.2)
EXACTNESS
OF
INDUCTIVE
LIMITS
.
19
(3.3)
FINAL
SUBCATEGORIES
.
20
CHAPTER
I.
TOPOLOGIES
AND
SHEAVES
.
23
§1.
TOPOLOGIES
.
23
(1.1)
PRELIMINARIES
.
23
(1.2)
GROTHENDIECK
'
S
NOTION
OF
TOPOLOGY
.
24
(1.3)
EXAMPLES
.
25
§2.
ABELIAN
PRESHEAVES
ON
TOPOLOGIES
.
31
(2.1)
THE
CATEGORY
OF
ABELIAN
PRESHEAVES
.
31
(2.2)
CECH-COHOMOLOGY
.
32
(2.3)
THE
FUNCTORS
F
P
AND
F
P
.
41
§3.
ABELIAN
SHEAVES
ON
TOPOLOGIES
.
46
(3.1)
THE
ASSOCIATED
SHEAF
OF
A
PRESHEAF
.
46
(3.2)
THE
CATEGORY
OF
ABELIAN
SHEAVES
.
50
(3.3)
COHOMOLOGY
OF
ABELIAN
SHEAVES
.
54
(3.4)
THE
SPECTRAL
SEQUENCES
FOR
CECH
COHOMOLOGY
.
56
(3.5)
FLABBY
SHEAVES
.
61
(3.6)
THE
FUNCTORS
F
A
AND
F
A
.
63
VIII
CONTENTS
(3.7)
THE
LERAY
SPECTRAL
SEQUENCES
.
69
(3.8)
LOCALIZATION
.
73
(3.9)
THE
COMPARISON
LEMMA
.
75
(3.10)
NOETHERIAN
TOPOLOGIES
.
79
(3.11)
COMMUTATION
OF
THE
FUNCTORS
H
Q
(U,
YY
)
WITH
PSEUDOFILTERED
INDUCTIVE
LIMITS
.
81
CHAPTER
II.
ETALE
COHOMOLOGY
.
85
§1.
THE
LILTALE
SITE
OF
A
SCHEME
.
85
(1.1)
ETALE
MORPHISMS
.
85
(1.2)
THE
ETALE
SITE
.
86
(1.3)
THE
RELATION
BETWEEN
ETALE
AND
ZARISKI
COHOMOLOGY
.
86
(1.4)
THE
FUNCTORS
/*
AND
F*
.87
(1.5)
THE
RESTRICTED
ETALE
SITE
.
90
§2.
THE
CASE
X
=
SPEC(K)
.
92
§3.
EXAMPLES
OF
ETALE
SHEAVES
.
95
(3.1)
REPRESENTABLE
SHEAVES
.
95
(3.2)
ETALE
SHEAVES
OF
OX-MODULES
.
100
(3.3)
APPENDIX:
THE
BIG
ETALE
SITE
.
101
§4.
THE
THEORIES
OF
ARTIN-SCHREIER
AND
OF
KUMMER
.
103
(4.1)
THE
GROUPS
H
Q
(X,
(G)X)
.
103
(4.2)
THE
ARTIN-SCHREIER
SEQUENCE
.
105
(4.3)
THE
GROUPS
H
Q
(X,
(G
M
)
X
)
.
106
(4.4)
THE
KUMMER
SEQUENCE
.
109
(4.5)
THE
SHEAF
OF
DIVISORS
ON
X&,
.
ILL
§5.
STALKS
OF
ETALE
SHEAVES
.
114
§6.
STRICT
LOCALIZATIONS
.
120
(6.1)
HENSELIAN
RINGS
AND
STRICTLY
LOCAL
RINGS
.
120
(6.2)
STRICT
LOCALIZATION
OF
A
SCHEME
.
123
(6.3)
ETALE
COHOMOLOGY
ON
PROJECTIVE
LIMITS
OF
SCHEMES
.
125
(6.4)
THE
STALKS
OF
R
Q
F(F)
.
127
§7.
THE
ARTIN
SPECTRAL
SEQUENCE
.
130
§8.
THE
DECOMPOSITION
THEOREM.
RELATIVE
COHOMOLOGY
.
134
(8.1)
THE
DECOMPOSITION
THEOREM
.
134
(8.2)
THE
FUNCTORS
JI
AND
I
!
.
141
(8.3)
RELATIVE
COHOMOLOGY
.
144
CONTENTS
IX
§9.
TORSION
SHEAVES,
LOCALLY
CONSTANT
SHEAVES,
CONSTRUCTIBLE
SHEAVES
.
146
(9.1)
TORSION
SHEAVES
.
146
(9.2)
LOCALLY
CONSTANT
SHEAVES
.
151
(9.3)
CONSTRUCTIBLE
SHEAVES
.
154
§10.
ETALE
COHOMOLOGY
OF
CURVES
.
157
(10.1)
SKYSCRAPER
SHEAVES
.
157
(10.2)
THE
COHOMOLOGICAL
DIMENSION
OF
ALGEBRAIC
CURVES
.
162
(10.3)
THE
GROUPS
H^X,
(G
RO
)X)
AND
F(X,(/Z
N
)
X
)
.
165
(10.4)
THE
FINITENESS
THEOREM
FOR
CONSTRUCTIBLE
SHEAVES
.
168
§11.
GENERAL
THEOREMS
IN
ETALE
COHOMOLOGY
THEORY
.
173
(11.1)
THE
COMPARISON
THEOREM
WITH
CLASSICAL
COHOMOLOGY
.
173
(11.2)
THE
COHOMOLOGICAL
DIMENSION
OF
ALGEBRAIC
SCHEMES
.
174
(11.3)
THE
BASE
CHANGE
THEOREM
FOR
PROPER
MORPHISMS
.
175
(11.4)
FINITENESS
THEOREMS
.
176
BIBLIOGRAPHY
.
179
INDEX
.
183 |
any_adam_object | 1 |
author | Tamme, Günter 1937-2022 |
author_GND | (DE-588)117726052 |
author_facet | Tamme, Günter 1937-2022 |
author_role | aut |
author_sort | Tamme, Günter 1937-2022 |
author_variant | g t gt |
building | Verbundindex |
bvnumber | BV009770669 |
callnumber-first | Q - Science |
callnumber-label | QA564 |
callnumber-raw | QA564 |
callnumber-search | QA564 |
callnumber-sort | QA 3564 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 240 SK 300 SK 320 |
ctrlnum | (OCoLC)30703628 (DE-599)BVBBV009770669 |
dewey-full | 514/.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.23 |
dewey-search | 514/.23 |
dewey-sort | 3514 223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV009770669</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230216</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940815s1994 gw |||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">941525767</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387571167</subfield><subfield code="9">0-387-57116-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540571167</subfield><subfield code="9">3-540-57116-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540571162</subfield><subfield code="9">978-3-540-57116-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)30703628</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009770669</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA564</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.23</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14F20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tamme, Günter</subfield><subfield code="d">1937-2022</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)117726052</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Einführung in die étale Kohomologie</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to étale cohomology</subfield><subfield code="c">Günter Tamme</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin u.a.</subfield><subfield code="b">Springer</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 186 S.</subfield><subfield code="b">grap. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cohomologie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Faisceaux, théorie des</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Géométrie algébrique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homologie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homologie</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homology theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sheaf theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohomologietheorie</subfield><subfield code="0">(DE-588)4164610-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Etalkohomologie</subfield><subfield code="0">(DE-588)4153071-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Etalkohomologie</subfield><subfield code="0">(DE-588)4153071-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kohomologietheorie</subfield><subfield code="0">(DE-588)4164610-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-642-78421-7</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006464506&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006464506</subfield></datafield></record></collection> |
id | DE-604.BV009770669 |
illustrated | Not Illustrated |
indexdate | 2024-08-16T01:34:30Z |
institution | BVB |
isbn | 0387571167 3540571167 9783540571162 |
language | English German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006464506 |
oclc_num | 30703628 |
open_access_boolean | |
owner | DE-739 DE-355 DE-BY-UBR DE-703 DE-384 DE-29T DE-19 DE-BY-UBM DE-83 DE-11 DE-188 DE-706 |
owner_facet | DE-739 DE-355 DE-BY-UBR DE-703 DE-384 DE-29T DE-19 DE-BY-UBM DE-83 DE-11 DE-188 DE-706 |
physical | IX, 186 S. grap. Darst. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer |
record_format | marc |
series2 | Universitext |
spelling | Tamme, Günter 1937-2022 Verfasser (DE-588)117726052 aut Einführung in die étale Kohomologie Introduction to étale cohomology Günter Tamme Berlin u.a. Springer 1994 IX, 186 S. grap. Darst. txt rdacontent n rdamedia nc rdacarrier Universitext Cohomologie gtt Faisceaux, théorie des ram Géométrie algébrique ram Homologie gtt Homologie ram Geometry, Algebraic Homology theory Sheaf theory Kohomologietheorie (DE-588)4164610-1 gnd rswk-swf Etalkohomologie (DE-588)4153071-8 gnd rswk-swf Etalkohomologie (DE-588)4153071-8 s DE-604 Kohomologietheorie (DE-588)4164610-1 s 1\p DE-604 Erscheint auch als Online-Ausgabe 978-3-642-78421-7 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006464506&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Tamme, Günter 1937-2022 Introduction to étale cohomology Cohomologie gtt Faisceaux, théorie des ram Géométrie algébrique ram Homologie gtt Homologie ram Geometry, Algebraic Homology theory Sheaf theory Kohomologietheorie (DE-588)4164610-1 gnd Etalkohomologie (DE-588)4153071-8 gnd |
subject_GND | (DE-588)4164610-1 (DE-588)4153071-8 |
title | Introduction to étale cohomology |
title_alt | Einführung in die étale Kohomologie |
title_auth | Introduction to étale cohomology |
title_exact_search | Introduction to étale cohomology |
title_full | Introduction to étale cohomology Günter Tamme |
title_fullStr | Introduction to étale cohomology Günter Tamme |
title_full_unstemmed | Introduction to étale cohomology Günter Tamme |
title_short | Introduction to étale cohomology |
title_sort | introduction to etale cohomology |
topic | Cohomologie gtt Faisceaux, théorie des ram Géométrie algébrique ram Homologie gtt Homologie ram Geometry, Algebraic Homology theory Sheaf theory Kohomologietheorie (DE-588)4164610-1 gnd Etalkohomologie (DE-588)4153071-8 gnd |
topic_facet | Cohomologie Faisceaux, théorie des Géométrie algébrique Homologie Geometry, Algebraic Homology theory Sheaf theory Kohomologietheorie Etalkohomologie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006464506&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT tammegunter einfuhrungindieetalekohomologie AT tammegunter introductiontoetalecohomology |