Hilbert bases and the facets of special knapsack polytopes:

Abstract: "Let a set N of items, a capacity F [element of] N and weights a[subscript i] [element of] N, i [element of] N be given. The 0/1 knapsack polytope is the convex hull of all 0/1 vectors that satisfy the inequality [formula]. In this paper we present a linear description of the 0/1 knap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Weismantel, Robert (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin Konrad-Zuse-Zentrum für Informationstechnik Berlin 1994
Schriftenreihe:Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC 1994,19
Schlagworte:
Zusammenfassung:Abstract: "Let a set N of items, a capacity F [element of] N and weights a[subscript i] [element of] N, i [element of] N be given. The 0/1 knapsack polytope is the convex hull of all 0/1 vectors that satisfy the inequality [formula]. In this paper we present a linear description of the 0/1 knapsack polytope for the special case where a[subscript i] [element of] [[mu], [lambda]] for all items i [element of] N and 1 [<or =] [mu] <[lambda] [<or =] b are two natural numbers. The inequalities needed for this description involve elements of the Hilbert basis of a certain cone. The principle of generating inequalities based on elements of a Hilbert basis suggests further extensions."
Beschreibung:25 S.

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!