Hilbert bases and the facets of special knapsack polytopes:
Abstract: "Let a set N of items, a capacity F [element of] N and weights a[subscript i] [element of] N, i [element of] N be given. The 0/1 knapsack polytope is the convex hull of all 0/1 vectors that satisfy the inequality [formula]. In this paper we present a linear description of the 0/1 knap...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Konrad-Zuse-Zentrum für Informationstechnik Berlin
1994
|
Schriftenreihe: | Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC
1994,19 |
Schlagworte: | |
Zusammenfassung: | Abstract: "Let a set N of items, a capacity F [element of] N and weights a[subscript i] [element of] N, i [element of] N be given. The 0/1 knapsack polytope is the convex hull of all 0/1 vectors that satisfy the inequality [formula]. In this paper we present a linear description of the 0/1 knapsack polytope for the special case where a[subscript i] [element of] [[mu], [lambda]] for all items i [element of] N and 1 [<or =] [mu] <[lambda] [<or =] b are two natural numbers. The inequalities needed for this description involve elements of the Hilbert basis of a certain cone. The principle of generating inequalities based on elements of a Hilbert basis suggests further extensions." |
Beschreibung: | 25 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009766380 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 940822s1994 |||| 00||| engod | ||
035 | |a (OCoLC)32423584 | ||
035 | |a (DE-599)BVBBV009766380 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 | ||
100 | 1 | |a Weismantel, Robert |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hilbert bases and the facets of special knapsack polytopes |c Robert Weismantel |
264 | 1 | |a Berlin |b Konrad-Zuse-Zentrum für Informationstechnik Berlin |c 1994 | |
300 | |a 25 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC |v 1994,19 | |
520 | 3 | |a Abstract: "Let a set N of items, a capacity F [element of] N and weights a[subscript i] [element of] N, i [element of] N be given. The 0/1 knapsack polytope is the convex hull of all 0/1 vectors that satisfy the inequality [formula]. In this paper we present a linear description of the 0/1 knapsack polytope for the special case where a[subscript i] [element of] [[mu], [lambda]] for all items i [element of] N and 1 [<or =] [mu] <[lambda] [<or =] b are two natural numbers. The inequalities needed for this description involve elements of the Hilbert basis of a certain cone. The principle of generating inequalities based on elements of a Hilbert basis suggests further extensions." | |
650 | 4 | |a Combinatorial optimization | |
830 | 0 | |a Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC |v 1994,19 |w (DE-604)BV004801715 |9 1994,19 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006460994 |
Datensatz im Suchindex
_version_ | 1804124114062934016 |
---|---|
any_adam_object | |
author | Weismantel, Robert |
author_facet | Weismantel, Robert |
author_role | aut |
author_sort | Weismantel, Robert |
author_variant | r w rw |
building | Verbundindex |
bvnumber | BV009766380 |
ctrlnum | (OCoLC)32423584 (DE-599)BVBBV009766380 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01666nam a2200289 cb4500</leader><controlfield tag="001">BV009766380</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940822s1994 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)32423584</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009766380</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Weismantel, Robert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hilbert bases and the facets of special knapsack polytopes</subfield><subfield code="c">Robert Weismantel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">25 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC</subfield><subfield code="v">1994,19</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "Let a set N of items, a capacity F [element of] N and weights a[subscript i] [element of] N, i [element of] N be given. The 0/1 knapsack polytope is the convex hull of all 0/1 vectors that satisfy the inequality [formula]. In this paper we present a linear description of the 0/1 knapsack polytope for the special case where a[subscript i] [element of] [[mu], [lambda]] for all items i [element of] N and 1 [<or =] [mu] <[lambda] [<or =] b are two natural numbers. The inequalities needed for this description involve elements of the Hilbert basis of a certain cone. The principle of generating inequalities based on elements of a Hilbert basis suggests further extensions."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial optimization</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC</subfield><subfield code="v">1994,19</subfield><subfield code="w">(DE-604)BV004801715</subfield><subfield code="9">1994,19</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006460994</subfield></datafield></record></collection> |
id | DE-604.BV009766380 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:40:31Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006460994 |
oclc_num | 32423584 |
open_access_boolean | |
owner | DE-12 |
owner_facet | DE-12 |
physical | 25 S. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Konrad-Zuse-Zentrum für Informationstechnik Berlin |
record_format | marc |
series | Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC |
series2 | Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC |
spelling | Weismantel, Robert Verfasser aut Hilbert bases and the facets of special knapsack polytopes Robert Weismantel Berlin Konrad-Zuse-Zentrum für Informationstechnik Berlin 1994 25 S. txt rdacontent n rdamedia nc rdacarrier Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC 1994,19 Abstract: "Let a set N of items, a capacity F [element of] N and weights a[subscript i] [element of] N, i [element of] N be given. The 0/1 knapsack polytope is the convex hull of all 0/1 vectors that satisfy the inequality [formula]. In this paper we present a linear description of the 0/1 knapsack polytope for the special case where a[subscript i] [element of] [[mu], [lambda]] for all items i [element of] N and 1 [<or =] [mu] <[lambda] [<or =] b are two natural numbers. The inequalities needed for this description involve elements of the Hilbert basis of a certain cone. The principle of generating inequalities based on elements of a Hilbert basis suggests further extensions." Combinatorial optimization Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC 1994,19 (DE-604)BV004801715 1994,19 |
spellingShingle | Weismantel, Robert Hilbert bases and the facets of special knapsack polytopes Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC Combinatorial optimization |
title | Hilbert bases and the facets of special knapsack polytopes |
title_auth | Hilbert bases and the facets of special knapsack polytopes |
title_exact_search | Hilbert bases and the facets of special knapsack polytopes |
title_full | Hilbert bases and the facets of special knapsack polytopes Robert Weismantel |
title_fullStr | Hilbert bases and the facets of special knapsack polytopes Robert Weismantel |
title_full_unstemmed | Hilbert bases and the facets of special knapsack polytopes Robert Weismantel |
title_short | Hilbert bases and the facets of special knapsack polytopes |
title_sort | hilbert bases and the facets of special knapsack polytopes |
topic | Combinatorial optimization |
topic_facet | Combinatorial optimization |
volume_link | (DE-604)BV004801715 |
work_keys_str_mv | AT weismantelrobert hilbertbasesandthefacetsofspecialknapsackpolytopes |