An n-categorical pasting theorem:
Abstract: "In order to facilitate the study of 2-categories with structure, we state and prove an n-categorical pasting theorem. This is based upon a new definition of n-pasting scheme that generalises Johnson's definition of a well-formed loop-free pasting scheme by weakening his no direc...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Edinburgh
1991
|
Schriftenreihe: | Laboratory for Foundations of Computer Science <Edinburgh>: LFCS report series
190 |
Schlagworte: | |
Zusammenfassung: | Abstract: "In order to facilitate the study of 2-categories with structure, we state and prove an n-categorical pasting theorem. This is based upon a new definition of n-pasting scheme that generalises Johnson's definition of a well-formed loop-free pasting scheme by weakening his no direct loops condition. We define n-pasting, prove the theorem, and show that for n=3, it incorporates all possible composites of n-cells. We show that that is not true for higher n. We define the horizontal n-category of an (n+1)-category to generalise that of a 2-category, we define horizontal and vertical composition for an (n+1)-category and we state and prove an interchange law We also study further conditions on a pasting diagram and their impact upon how one may evaluate a composite, and we express Street's free n-categories in terms of left adjoints. |
Beschreibung: | 42 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009746678 | ||
003 | DE-604 | ||
005 | 19991116 | ||
007 | t | ||
008 | 940804s1991 |||| 00||| eng d | ||
035 | |a (OCoLC)26180340 | ||
035 | |a (DE-599)BVBBV009746678 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
084 | |a DAT 706f |2 stub | ||
084 | |a MAT 189f |2 stub | ||
100 | 1 | |a Power, Anthony John |e Verfasser |4 aut | |
245 | 1 | 0 | |a An n-categorical pasting theorem |c by A. J. Power |
264 | 1 | |a Edinburgh |c 1991 | |
300 | |a 42 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Laboratory for Foundations of Computer Science <Edinburgh>: LFCS report series |v 190 | |
520 | 3 | |a Abstract: "In order to facilitate the study of 2-categories with structure, we state and prove an n-categorical pasting theorem. This is based upon a new definition of n-pasting scheme that generalises Johnson's definition of a well-formed loop-free pasting scheme by weakening his no direct loops condition. We define n-pasting, prove the theorem, and show that for n=3, it incorporates all possible composites of n-cells. We show that that is not true for higher n. We define the horizontal n-category of an (n+1)-category to generalise that of a 2-category, we define horizontal and vertical composition for an (n+1)-category and we state and prove an interchange law | |
520 | 3 | |a We also study further conditions on a pasting diagram and their impact upon how one may evaluate a composite, and we express Street's free n-categories in terms of left adjoints. | |
650 | 7 | |a Computer software |2 sigle | |
650 | 7 | |a Mathematics |2 sigle | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Categories (Mathematics) | |
830 | 0 | |a Laboratory for Foundations of Computer Science <Edinburgh>: LFCS report series |v 190 |w (DE-604)BV008930032 |9 190 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006446662 |
Datensatz im Suchindex
_version_ | 1804124092738043904 |
---|---|
any_adam_object | |
author | Power, Anthony John |
author_facet | Power, Anthony John |
author_role | aut |
author_sort | Power, Anthony John |
author_variant | a j p aj ajp |
building | Verbundindex |
bvnumber | BV009746678 |
classification_tum | DAT 706f MAT 189f |
ctrlnum | (OCoLC)26180340 (DE-599)BVBBV009746678 |
discipline | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01925nam a2200349 cb4500</leader><controlfield tag="001">BV009746678</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19991116 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940804s1991 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)26180340</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009746678</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 706f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 189f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Power, Anthony John</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An n-categorical pasting theorem</subfield><subfield code="c">by A. J. Power</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Edinburgh</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">42 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Laboratory for Foundations of Computer Science <Edinburgh>: LFCS report series</subfield><subfield code="v">190</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "In order to facilitate the study of 2-categories with structure, we state and prove an n-categorical pasting theorem. This is based upon a new definition of n-pasting scheme that generalises Johnson's definition of a well-formed loop-free pasting scheme by weakening his no direct loops condition. We define n-pasting, prove the theorem, and show that for n=3, it incorporates all possible composites of n-cells. We show that that is not true for higher n. We define the horizontal n-category of an (n+1)-category to generalise that of a 2-category, we define horizontal and vertical composition for an (n+1)-category and we state and prove an interchange law</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">We also study further conditions on a pasting diagram and their impact upon how one may evaluate a composite, and we express Street's free n-categories in terms of left adjoints.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer software</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Categories (Mathematics)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Laboratory for Foundations of Computer Science <Edinburgh>: LFCS report series</subfield><subfield code="v">190</subfield><subfield code="w">(DE-604)BV008930032</subfield><subfield code="9">190</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006446662</subfield></datafield></record></collection> |
id | DE-604.BV009746678 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:40:10Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006446662 |
oclc_num | 26180340 |
open_access_boolean | |
physical | 42 S. |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
record_format | marc |
series | Laboratory for Foundations of Computer Science <Edinburgh>: LFCS report series |
series2 | Laboratory for Foundations of Computer Science <Edinburgh>: LFCS report series |
spelling | Power, Anthony John Verfasser aut An n-categorical pasting theorem by A. J. Power Edinburgh 1991 42 S. txt rdacontent n rdamedia nc rdacarrier Laboratory for Foundations of Computer Science <Edinburgh>: LFCS report series 190 Abstract: "In order to facilitate the study of 2-categories with structure, we state and prove an n-categorical pasting theorem. This is based upon a new definition of n-pasting scheme that generalises Johnson's definition of a well-formed loop-free pasting scheme by weakening his no direct loops condition. We define n-pasting, prove the theorem, and show that for n=3, it incorporates all possible composites of n-cells. We show that that is not true for higher n. We define the horizontal n-category of an (n+1)-category to generalise that of a 2-category, we define horizontal and vertical composition for an (n+1)-category and we state and prove an interchange law We also study further conditions on a pasting diagram and their impact upon how one may evaluate a composite, and we express Street's free n-categories in terms of left adjoints. Computer software sigle Mathematics sigle Mathematik Categories (Mathematics) Laboratory for Foundations of Computer Science <Edinburgh>: LFCS report series 190 (DE-604)BV008930032 190 |
spellingShingle | Power, Anthony John An n-categorical pasting theorem Laboratory for Foundations of Computer Science <Edinburgh>: LFCS report series Computer software sigle Mathematics sigle Mathematik Categories (Mathematics) |
title | An n-categorical pasting theorem |
title_auth | An n-categorical pasting theorem |
title_exact_search | An n-categorical pasting theorem |
title_full | An n-categorical pasting theorem by A. J. Power |
title_fullStr | An n-categorical pasting theorem by A. J. Power |
title_full_unstemmed | An n-categorical pasting theorem by A. J. Power |
title_short | An n-categorical pasting theorem |
title_sort | an n categorical pasting theorem |
topic | Computer software sigle Mathematics sigle Mathematik Categories (Mathematics) |
topic_facet | Computer software Mathematics Mathematik Categories (Mathematics) |
volume_link | (DE-604)BV008930032 |
work_keys_str_mv | AT poweranthonyjohn anncategoricalpastingtheorem |