The colloidal domain: where physics, chemistry, biology, and technology meet
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY [u.a.]
VCH
1994
|
Schriftenreihe: | Advances in interfacial engineering series
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXII, 515 S. Ill., graph. Darst. |
ISBN: | 1560815256 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV009719826 | ||
003 | DE-604 | ||
005 | 20030903 | ||
007 | t| | ||
008 | 940718s1994 gw ad|| |||| 00||| eng d | ||
016 | 7 | |a 941385302 |2 DE-101 | |
020 | |a 1560815256 |9 1-56081-525-6 | ||
035 | |a (OCoLC)29704263 | ||
035 | |a (DE-599)BVBBV009719826 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-29 |a DE-29T |a DE-91 |a DE-91G |a DE-703 |a DE-19 |a DE-862 |a DE-634 |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QD549 | |
082 | 0 | |a 541.3/45 |2 20 | |
084 | |a VE 8000 |0 (DE-625)147145:253 |2 rvk | ||
084 | |a CHE 180f |2 stub | ||
084 | |a CHE 178f |2 stub | ||
084 | |a CHE 185f |2 stub | ||
100 | 1 | |a Evans, Douglas Fennell |e Verfasser |4 aut | |
245 | 1 | 0 | |a The colloidal domain |b where physics, chemistry, biology, and technology meet |c D. Fennell Evans ; Håkan Wennerström |
264 | 1 | |a New York, NY [u.a.] |b VCH |c 1994 | |
300 | |a XXXII, 515 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Advances in interfacial engineering series | |
650 | 4 | |a Chimie des surfaces | |
650 | 7 | |a Colloïden |2 gtt | |
650 | 4 | |a Colloïdes | |
650 | 7 | |a Oppervlakken |2 gtt | |
650 | 4 | |a Colloids | |
650 | 4 | |a Surface Properties | |
650 | 4 | |a Surface chemistry | |
650 | 0 | 7 | |a Kolloidphysik |0 (DE-588)4713763-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kolloidchemie |0 (DE-588)4134420-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kolloid |0 (DE-588)4164695-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Oberflächenchemie |0 (DE-588)4126166-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Grenzflächenchemie |0 (DE-588)4246080-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Grenzflächenchemie |0 (DE-588)4246080-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Oberflächenchemie |0 (DE-588)4126166-5 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Kolloidchemie |0 (DE-588)4134420-0 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Kolloid |0 (DE-588)4164695-2 |D s |
689 | 3 | |5 DE-188 | |
689 | 4 | 0 | |a Kolloidphysik |0 (DE-588)4713763-0 |D s |
689 | 4 | |8 1\p |5 DE-604 | |
700 | 1 | |a Wennerström, Håkan |e Verfasser |4 aut | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006429992&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-006429992 |
Datensatz im Suchindex
DE-BY-862_location | 2801 |
---|---|
DE-BY-FWS_call_number | 2801/1991:6103 |
DE-BY-FWS_katkey | 136793 |
DE-BY-FWS_media_number | 083100408592 |
_version_ | 1820648003751378944 |
adam_text |
CONTENTS
INTRODUCTION / WHY COLLOIDAL SYSTEMS
ARE IMPORTANT XXV
THE COLLOIDAL DOMAIN ENCOMPASSES MANY BIOLOGICAL AND
TECHNOLOGICAL SYSTEMS XXV
UNDERSTANDING OF COLLOIDAL PHENOMENA IS ADVANCING
RAPIDLY XXVII
ASSOCIATION COLLOIDS DISPLAY KEY CONCEPTS THAT GUIDED
THE STRUCTURE OF THIS BOOK XXIX
1 / SOLUTES AND SOLVENTS, SELF-ASSEMBLY
OF AMPHIPHILES 1
1.1 AMPHIPHILIC SELF-ASSEMBLY PROCESSES ARE
SPONTANEOUS, ARE CHARACTERIZED BY START-STOP
FEATURES, AND PRODUCE AGGREGATES WITH WELL
DEFINED PROPERTIES 5
1.2 AMPHIPHILIC MOLECULES ARE LIQUIDLIKE IN
SELF
ASSEMBLED AGGREGATES 8
1.3 SURFACTANT NUMBERS PROVIDE USEFUL GUIDES FOR
PREDICTING AGGREGATE STRUCTURES 12
1.4 ENTROPY OF MIXING PLAYS A BASIC ROLE IN MANY
COLLOIDAL PHENOMENA 17
1.5 THERMODYNAMICS OF REGULAR SOLUTIONS PROVIDES
THE BASIS FOR UNDERSTANDING MOLECULAR INTERACTIONS
LEADING TO NONIDEALITY AND PHASE SEPARATION 19
1.6 SOLVOPHOBICITY DRIVES AMPHIPHILIC
AGGREGATION 24
1.7 MANY PECULARITIES ASSOCIATED WITH SOLVOPHOBICITY
IN WATER CAN BE UNDERSTOOD BY COMPARING
AQUEOUS AND NONAQUEOUS POLAR SOLVENTS 26
EXERCISES 34
LITERATURE 35
2 / SURFACE CHEMISTRY AND MONOLAYERS 37
2.1 WE CAN COMPREHEND SURFACE TENSION IN TERMS OF
SURFACE FREE ENERGY 41
2.1.1 MOLECULAR ORIGINS OF SURFACE TENSION CAN
BE UNDERSTOOD IN TERMS OF THE DIFFERENCE
IN INTERACTION BETWEEN MOLECULES IN THE
BULK AND AT THE INTERFACE 41
2.1.2 TWO COMPLEMENTARY CONCEPTS DEFINE
SURFACE TENSION: LINE OF FORCE AND ENERGY
REQUIRED TO CREATE NEW SURFACE AREA 43
2.1.3 THE WORK OF ADHESION AND COHESION IS
RELATED TO SURFACE TENSION AND CAN
DETERMINE THE SPONTANEOUS SPREADING OF
ONE LIQUID ON ANOTHER 44
2.1
A THE YOUNG-LAPLACE EQUATION RELATES
PRESSURE DIFFERENCES ACROSS A SURFACE TO
ITS CURVATURE 48
2.2 SEVERAL TECHNIQUES MEASURE SURFACE TENSION 50
2.2.1 SURFACE TENSION GOVERNS THE RISE OF A
LIQUID IN A CAPILLARY TUBE 50
2.2.2 THE WILHELMY PLATE METHOD MEASURES THE
CHANGE IN WEIGHT OF A PLATE BROUGHT INTO
CONTACT WITH A LIQUID 52
2.2.3 THE SHAPES OF SESSILE AND PENDANT DROPS
CAN BE USED TO DETERMINE SURFACE OR
INTERFACIAL TENSION 54
2.2 A CONTACT ANGLES YIELD INFORMATION ON
SOLID SURFACES 54
2.3 CAPILLARY CONDENSATION, OSTWALD RIPENING, AND
NUCLEATION ARE PRACTICAL MANIFESTATIONS OF
SURFACE PHENOMENA 55
2.3.1 SURFACE ENERGY EFFECTS CAN CAUSE A LIQUID
TO CONDENSE ON A SURFACE PRIOR TO
SATURATION IN THE BULK PHASE 55
2.3.2 SURFACE FREE ENERGIES GOVERN THE GROWTH
OF COLLOIDAL PARTICLES 57
2.3.3 SURFACE FREE ENERGIES OPPOSE THE
NUCLEATION OF A NEW PHASE 58
2.3A COMBINING THE KELVIN EQUATION WITH A
KINETIC ASSOCIATION MODEL
PROVIDES AN EXPRESSION FOR THE RATE OF
HOMOGENEOUS NUCLEATION 59
2.4 THERMODYNAMIC EQUATIONS THAT INCLUDE SURFACE
CONTRIBUTIONS PROVIDE A FUNDAMENTAL BASIS FOR
CHARACTERIZING BEHAVIOR 63
2.4.1 THE GIBBS MODEL PROVIDES A POWERFUL
BASIS FOR ANALYZING SURFACE PHENOMENA BY
DIVIDING A SYSTEM INTO TWO BULK PHASES
AND AN INFINITESIMALLY THIN DIVIDING
SURFACE 63
2.4.2 THE GIBBS ADSORPTION EQUATION RELATES
SURFACE EXCESS TO SURFACE TENSION AND THE
CHEMICAL POTENTIAL OF THE SOLUTE 64
2.4.3 THE LANGMUIR EQUATION DESCRIBES
ADSORPTION AT SOLID INTERFACES WHERE
WE CANNOT MEASURE SURFACE
TENSION DIRECTLY 66
2.5 MONOLAYERS ARE TWO-DIMENSIONAL SELF-ORGANIZING
SYSTEMS 67
2.5.1 MONOLAYERS FORMED BY SOLUBLE
AMPHIPHILES CAN BE CHARACTERIZED BY
SURFACE TENSION MEASUREMENTS USING THE
GIBBS ADSORPTION ISOTHERM 67
2.5.2 MONOLAYERS FORMED BY INSOLUBLE
AMPHIPHILES BEHAVE AS SEPARATE PHASES
AND ARE MORE READILY CHARACTERIZED USING
THE LANGMUIR BALANCE 69
2.6 YY
S
VERSUS A
0
SURFACE ISOTHERMS FOR MONOLAYERS
CONTAINING INSOLUBLE AMPHIPHILES PARALLEL P
VERSUS V ISOTHERMS FOR BULK SYSTEMS 70
2.6.1 FLUORESCENCE MICROSCOPY CAN VISUALIZE
THE AGGREGATION STATE OF
MONOLAYERS DIRECTLY 73
2.6.2 THE LANGMUIR-BLODGETT TECHNIQUE
PROVIDES A WAY TO DEPOSIT MONOLAYERS OR
MULTILAYERS ONTO SOLID SURFACES 75
2.7 SCANNING TUNNELING AND ATOMIC FORCE
MICROSCOPIES PERMIT IMAGING OF MOLECULAR
STRUCTURES AT SOLID INTERFACES 75
EXERCISES 79
LITERATURE 86
3 / ELECTROSTATIC INTERACTIONS IN
COLLOIDAL SYSTEMS 87
3.1 INTERMOLECULAR INTERACTIONS OFTEN CAN BE
EXPRESSED CONVENIENTLY AS THE SUM OF
FIVE TERMS 92
3.2 MULTIPOLE EXPANSION OF THE CHARGE DISTRIBUTION
PROVIDES A CONVENIENT WAY TO EXPRESS INTERACTIONS
BETWEEN MOLECULES 93
3.3 WHEN ELECTROSTATIC INTERACTIONS ARE SMALLER THAN
THE THERMAL ENERGY, WE CAN USE ANGLE-AVERAGED
POTENTIALS TO EVALUATE THEM AND OBTAIN THE
FREE ENERGY 99
3.4 INDUCED DIPOLES CONTRIBUTE TO ELECTROSTATIC
INTERACTIONS 101
3.5 SEPARATING ION-ION INTERACTIONS FROM CONTRIBUTIONS
OF DIPOLES AND HIGHER MULTIPOLES IN THE POISSON
EQUATION SIMPLIFIES DEALING WITH
CONDENSED PHASES 104
3.6 THE POISSON EQUATION CONTAINING SOLVENT
AVERAGED PROPERTIES DESCRIBES THE FREE ENERGY OF
ION SOLVATION 109
3.7 THE POISSON-BOLTZMANN EQUATION CAN BE USED TO
CALCULATE THE ION DISTRIBUTION IN SOLUTION 110
3.7.1 THE GOUY-CHAPMAN THEORY RELATES
SURFACE CHARGE DENSITY TO SURFACE
POTENTIAL AND ION DISTRIBUTION OUTSIDE A
PLANAR SURFACE 110
3.7.2 LINEARIZING THE POISSON-BOLTZMANN
EQUATION LEADS TO EXPONENTIALLY DECAYING
POTENTIALS AND THE DEBYE-HUECKEL
THEORY 115
3.7.3 THE GOUY-CHAPMAN THEORY PROVIDES
INSIGHT INTO ION DISTRIBUTION NEAR
CHARGED SURFACES 117
3.8 THE ELECTROSTATIC FREE ENERGY OF CREATING A
CHARGED SURFACE CAN BE CALCULATED FROM THE
POISSON-BOLTZMANN EQUATION 120
3.9 ION ADSORPTION, ION BINDING, AND SURFACE TITRATION
PLAY IMPORTANT ROLES IN DETERMINING THE PROPERTIES
OF CHARGED INTERFACES 123
EXERCISES 127
LITERATURE 130
4 / STRUCTURE AND PROPERTIES OF MICELLES 131
4.1 MICELLE FORMATION IS A COOPERATIVE ASSOCIATION
PROCESS 135
4.1.1 THERMODYNAMICS OF MICELLE FORMATION
PROVIDE USEFUL RELATIONSHIPS BETWEEN
FREE ENERGIES AND SURFACTANT CHEMICAL
POTENTIALS AND EXPLICIT RELATIONS FOR
ENTHALPY AND ENTROPY 141
4.2 MICELLES ARE CHARACTERIZED BY THEIR CRITICAL
MICELLE CONCENTRATIONS, AGGREGATION NUMBERS, AND
CHARACTERISTIC LIFETIMES 143
4.2.1 WE CAN DETERMINE CMCS BY SURFACE
TENSION, CONDUCTANCE, AND SURFACTANT ION
ELECTRODE MEASUREMENTS 143
4.2.2 MICELLAR AGGREGATION NUMBERS CAN BE
MEASURED MOST SIMPLY BY LIGHT SCATTERING
OR WITH FLUORESCENT PROBES 147
4.2.3 KINETIC EXPERIMENTS PROVIDE VALUABLE
INSIGHT INTO THE TIME SCALES OF DYNAMIC
PROCESSES IN MICELLAR SOLUTIONS 154
4.2.4 DYNAMICS OF SOLUTES DISSOLVED IN MICELLES
PROVIDE A MEASURE OF THE TIME SCALES FOR
SOLUBILIZATION PROCESSES 157
4.2.5 DIFFUSION PLAYS AN IMPORTANT ROLE IN
VIRTUALLY ALL MICELLAR PROCESSES 158
4.3 THE PROPERTIES OF MANY MICELLAR SOLUTIONS CAN BE
ANALYZED QUANTITATIVELY 160
4.3.1 THE POISSON-BOLTZMANN EQUATION
DESCRIBES HEAD GROUP INTERACTIONS IN
IONIC MICELLES 162
4.3.2 VARIATIONS IN THE CMC CAUSED BY
ELECTROSTATIC EFFECTS ARE WELL PREDICTED BY
THE POISSON-BOLTZMANN EQUATION 165
4.3.3 THE CONTRIBUTION OF THE SOLVOPHOBIC FREE
ENERGY AG(H P) DECREASES WHEN MICELLES
FORM IN NONAQUEOUS SOLVENTS 167
4.3.4 ENTHALPY AND ENTROPY OF MICELLIZATION
CHANGE MUCH MORE RAPIDLY WITH
TEMPERATURE THAN THE FREE ENERGY 168
4.3.5 MICELLIZATION OF UNCHARGED SURFACTANTS IS
MORE DIFFICULT TO MODEL THAN
IONIC SURFACTANTS 169
4.4 MICELLAR SOLUTIONS PLAY A KEY ROLE IN MANY
INDUSTRIAL AND BIOLOGICAL PROCESSES 171
4.4.1 DIGESTION OF FATS REQUIRES SOLUBILIZATION
BY BILE SALT MICELLES 171
4.4.2 SOLUBILIZATION IN MICELLAR SOLUTIONS
INVOLVES A COMPLEX COMBINATION
OF SOLUTION FLOW AND SURFACE
CHEMICAL KINETICS 173
4.4.3 MICELLAR CATALYSIS EXPLOITS THE LARGE
SURFACE AREAS ASSOCIATED WITH
MICELLES AND ALSO ILLUSTRATES THE
GRAHAM EQUATION 179
EXERCISES 181
LITERATURE 185
5 / FORCES IN COLLOIDAL SYSTEMS 187
5.1 ELECTROSTATIC DOUBLE-LAYER FORCES ARE
LONG-RANGED 192
5.1.1 A REPULSIVE ELECTROSTATIC FORCE
EXISTS BETWEEN A CHARGED AND A
NEUTRAL SURFACE 192
5.1.2 WE CAN SOLVE THE POISSON-BOLTZMANN
EQUATION WHEN ONLY COUNTERIONS ARE
PRESENT OUTSIDE THE CHARGED SURFACE 196
5.1.3 ION CONCENTRATION AT THE MIDPLANE
DETERMINES THE FORCE BETWEEN TWO
IDENTICALLY CHARGED SURFACES 198
5.1.4 THE BULK SOLUTION OFTEN PROVIDES A
SUITABLE REFERENCE FOR THE POTENTIAL 201
5.1.5 TWO SURFACES WITH EQUAL SIGNS BUT
DIFFERENT MAGNITUDES OF CHARGE ALWAYS
REPEL EACH OTHER 204
5.1.6 AS SURFACES BEARING OPPOSITE SIGNS MOVE
CLOSER TOGETHER, LONG-RANGE ELECTROSTATIC
ATTRACTION CHANGES TO REPULSION 206
5.2 VAN DER WAALS FORCES COMPRISE QUANTUM
MECHANICAL DISPERSION, ELECTROSTATIC KEESOM, AND
DEBYE FORCES 206
5.2.1 AN ATTRACTIVE DISPERSION FORCE OF
QUANTUM MECHANICAL ORIGIN OPERATES
BETWEEN ANY TWO MOLECULES 206
5.2.2 WE CAN CALCULATE THE DISPERSION
INTERACTION BETWEEN TWO COLLOIDAL
PARTICLES BY SUMMING OVER THE MOLECULES
ON A PAIRWISE BASIS 208
5.2.3 THE PRESENCE OF A MEDIUM BETWEEN TWO
INTERACTING PARTICLES MODIFIES THE
MAGNITUDE OF THE HAMAKER CONSTANT 213
5.2.4 THE DERJAGUIN APPROXIMATION RELATES THE
FORCE BETWEEN CURVED SURFACES TO
THE INTERACTION ENERGY BETWEEN
FLAT SURFACES 215
5.2.5 THE LIFSHITZ THEORY PROVIDES A UNIFIED
DESCRIPTION OF VAN DER WAALS FORCES
BETWEEN COLLOIDAL PARTICLES 218
5.3 SOLVENT AND SURFACE MOLECULARITY GIVES RISE TO
ADDITIONAL FORCES 221
5.3.1 PACKING FORCES PRODUCE OSCILLATORY
FORCE CURVES WITH A PERIOD DETERMINED
BY SOLVENT SIZE AND ARE MOST
READILY OBSERVED WITH SMOOTH
HARD SURFACES 222
5.3.2 LONG-RANGE ATTRACTIVE FORCES OCCUR WHEN
HYDROPHOBIC MONOLAYERS ADSORBED ONTO
MICA APPROACH EACH OTHER IN WATER 224
5.3.3 SHORT-RANGE FORCES THAT ENCOMPASS A
VARIETY OF INTERACTIONS PLAY KEY ROLES IN
STABILIZING COLLOIDAL SYSTEMS 227
5.3.4 UNDULATION FORCES CAN PLAY AN
IMPORTANT ROLE IN THE INTERACTION OF
FLUID BILAYERS 228
5.3.5 LOWERING A SOLVENT'S OSMOTIC PRESSURE
CREATES DEPLETION FORCES THAT DRIVE
COLLOIDAL SURFACES TOGETHER 229
5.4 HYDRODYNAMIC INTERACTIONS CAN MODULATE
INTERACTION FORCES 231
EXERCISES 234
LITERATURE 236
6 / BILAYER SYSTEMS 239
6.1 TRANSFORMATION OF BILAYER STRUCTURES CAN LEAD TO A
VARIETY OF GLOBAL STRUCTURES 246
6.1.1 BILAYERS CAN FOLD INTO MANY DIFFERENT
GLOBAL STRUCTURES 246
6.1.2 BILAYERS FORM BY STRONGLY COOPERATIVE
SELF-ASSOCIATION OR A GRADUAL
GROWTH PROCESS 248
6.2 COMPLETE CHARACTERIZATION OF BILAYERS REQUIRES A
VARIETY OF TECHNIQUES 249
6.2.1 X-RAY DIFFRACTION UNIQUELY IDENTIFIES A
LIQUID CRYSTALLINE STRUCTURE AND
ITS DIMENSIONS 249
6.2.2 MICROSCOPY YIELDS IMAGES OF AGGREGATE
STRUCTURES 251
6.2.3 NUCLEAR MAGNETIC RESONANCE TECHNIQUES
PROVIDE A PICTURE OF BILAYER STRUCTURE ON
THE MOLECULAR LEVEL 254
6.2.4 CALORIMETRY MONITORS PHASE TRANSITIONS
AND MEASURES TRANSITION ENTHALPIES 256
6.2.5 WE CAN ACCURATELY MEASURE INTERBILAYER
FORCES 259
6.2.6 MEASUREMENTS OF INTERBILAYER FORCES PLAY
A KEY ROLE IN TESTING THEORIES OF
SURFACE INTERACTIONS 265
6.3 PHOSPHOLIPID BILAYERS ARE INVOLVED IN A VARIETY OF
BIOLOGICAL PROCESSES 267
6.3.1 NUMEROUS MEMBRANE LIPIDS EXIST IN
EVERY ORGANISM 267
6.3.2 VESICLES CAN BE FORMED IN
VARIOUS WAYS 270
6.3.3 LIPID MEMBRANES ACT AS SOLVENTS FOR
MEMBRANE PROTEINS 272
6.3.4 THE FUNCTIONING OF A BIOLOGICAL MEMBRANE
INVOLVES SELECTIVE TRANSPORT OF SOLUTES
ACROSS THE BILAYER 272
EXERCISES 280
LITERATURE 283
7 I POLYMERS IN COLLOIDAL SYSTEMS 285
7.1 POLYMERS IN SOLUTION 289
7.1.1 CHAIN CONFIGURATIONAL ENTROPY AND
MONOMER-MONOMER INTERACTIONS
DETERMINE THE CONFIGURATION OF A SINGLE
POLYMER CHAIN 291
7.1.2 PERSISTENCE LENGTH DESCRIBES THE STIFFNESS
OF A POLYMER CHAIN 293
7.1.3 DIFFERENT CONCENTRATION REGIMES MUST BE
DISTINGUISHED TO DESCRIBE A POLYMER
SOLUTION 294
7.1.4 THE SEMIDILUTE REGIME IS WELL DESCRIBED
BY THE FLORY-HUGGINS THEORY 295
7.1.5 SCATTERING TECHNIQUES PROVIDE INFORMATION
ABOUT MOLECULAR WEIGHT AND CHAIN
CONFORMATION 297
7.1.6 CHARGED POLYMER CHAINS DISPLAY A MORE
EXTENDED CONFORMATION 301
7.1.7 PROTEIN FOLDING IS THE RESULT OF A DELICATE
BALANCE BETWEEN HYDROPHOBIC AND
HYDROPHILIC INTERACTIONS AND
CONFIGURATIONAL ENTROPY 302
7.2 POLYMERS MAY ASSOCIATE TO FORM A VARIETY
OF STRUCTURES 303
7.2.1 BLOCK COPOLYMERS SHOW THE SAME
SELF
ASSEMBLY PROPERTIES AS SURFACTANTS 303
7.2.2 POLYMERS WITH AMPHIPHILIC MONOMER
UNITS OFTEN FORM ORDERED
HELIX STRUCTURES 304
7.2.3 POLYMER SOLUTIONS SHOW A WIDE RANGE OF
RHEOLOGICAL PROPERTIES 307
7.2.4 POLYMERS FACILITATE THE SELF-ASSEMBLY
OF AMPHIPHILES 311
7.2.5 POLYMERS FORM GELS THROUGH
CHEMICAL CROSSLINKING AND BY
SELF-ASSOCIATION 312
7.3 POLYMERS AT SURFACES PLAY AN IMPORTANT ROLE IN
COLLOIDAL SYSTEMS 315
7.3.1 POLYMERS CAN BE ATTACHED TO A SURFACE
BY SPONTANEOUS ADSORPTION OR
BY GRAFTING 315
7.3.2 KINETICS OFTEN DETERMINES THE OUTCOME OF
A POLYMER ADSORPTION PROCESS 317
7.3.3 FORCES BETWEEN SURFACES CHANGE
DRASTICALLY WHEN POLYMERS
ADSORB 318
7.3.4 POLYELECTROLYTES CAN BE USED TO
FLOCCULATE CHARGE-STABILIZED COLLOIDAL
DISPERSIONS 321
EXERCISES 322
LITERATURE 323
8 / COLLOIDAL STABILITY 325
8.1 COLLOIDAL STABILITY INVOLVES BOTH KINETIC AND
THERMODYNAMIC CONSIDERATIONS 330
8.1.1 THE INTERACTION POTENTIAL BETWEEN
PARTICLES DETERMINES KINETIC
BEHAVIOR 330
8.1.2 PARTICLES DEFORMED UPON AGGREGATION
CHANGE THEIR EFFECTIVE INTERACTION
POTENTIAL 332
8.2 THE DLVO THEORY PROVIDES OUR BASIC
FRAMEWORK FOR THINKING ABOUT COLLOIDAL
INTERACTIONS 333
8.2.1 COMPETITION BETWEEN ATTRACTIVE VAN DER
WAALS AND REPULSIVE DOUBLE-LAYER FORCES
DETERMINES THE STABILITY OR INSTABILITY OF
MANY COLLOIDAL SYSTEMS 333
8.2.2 THE CRITICAL COAGULATION CONCENTRATION IS
SENSITIVE TO COUNTERION VALENCY 335
8.2.3 ADSORBING A POLYMER OR SURFACTANT FILM
ON THE PARTICLE SURFACE CAN STABILIZE
A COLLOID 338
8.3 KINETICS OF AGGREGATION ALLOW US TO PREDICT HOW
FAST COLLOIDAL SYSTEMS WILL COAGULATE 339
8.3.1 WE CAN DETERMINE THE BINARY RATE
CONSTANT FOR RAPID AGGREGATION FROM THE
DIFFUSIONAL MOTION 339
8.3.2 WE CAN CALCULATE COMPLETE AGGREGATION
KINETICS IF WE ASSUME THAT RATE
CONSTANTS ARE PRACTICALLY INDEPENDENT OF
PARTICLE SIZE 342
8.3.3 KINETICS OF SLOW FLOCCULATION DEPENDS
CRITICALLY ON BARRIER HEIGHT 345
8.3.4 AGGREGATES OF COLLOIDAL PARTICLES CAN SHOW
FRACTAL PROPERTIES 348
8.4 ELECTROKINETIC PHENOMENA ARE USED TO DETERMINE
ZETA POTENTIALS OF CHARGED SURFACES
AND PARTICLES 350
8.4.1 WE CAN RELATE THE ELECTROPHORETIC VELOCITY
OF A COLLOIDAL PARTICLE TO THE ELECTRICAL
POTENTIAL AT THE SLIP PLANE 350
8.4.2 WE CAN DETERMINE THE ZETA POTENTIAL FOR
A SURFACE BY MEASURING THE
STREAMING POTENTIAL 354
8.4.3 ELECTRO-OSMOSIS PROVIDES ANOTHER WAY TO
MEASURE THE ZETA POTENTIAL 357
EXERCISES 358
LITERATURE 361
9 / COLLOIDAL SOLS 363
9.1 COLLOIDAL SOLS FORMED BY DISPERSION
OR CONDENSATION PROCESSES USUALLY
ARE HETEROGENEOUS 368
9.1.1 CONTROLLING NUCLEATION AND GROWTH STEPS
CAN PRODUCE MONODISPERSE SOLS 369
9.2 THE CONCENTRATION OF SILVER AND IODIDE
IONS DETERMINES THE SURFACE POTENTIAL OF SILVER
IODIDE SOLS 371
9.2.1 POTENTIAL-DETERMINING IONS PLAY AN
IMPORTANT ROLE IN CONTROLLING
STABILITY 374
9.3 CLAYS ARE COLLOIDAL SOLS WHOSE SURFACE
CHARGE DENSITY REFLECTS THE CHEMISTRY OF THEIR
CRYSTAL STRUCTURE 377
9.3.1 DIRECTLY MEASURABLE INTERACTION FORCES
BETWEEN TWO MICA SURFACES
PROVIDE INSIGHT INTO THE COMPLEXITIES OF
COLLOIDAL SYSTEMS 379
9.3.2 COAGULATED STRUCTURES COMPLICATE THE
COLLOIDAL STABILITY OF CLAY SOLS 382
9.4 MONODISPERSE LATEX SPHERES CAN MODEL VARIOUS
STATES OF MATTER AS WELL AS THE PHASE
TRANSFORMATIONS BETWEEN THEM 384
9.4.1 LONG-RANGE ELECTROSTATIC REPULSIONS
DOMINATE THE SOLUTION BEHAVIOR OF IONIC
LATEX SPHERES 385
9.4.2 STERICALLY STABILIZED LATEX SPHERES
SHOW ONLY SHORT-RANGE INTERACTIONS AND
FORM STRUCTURED SOLUTIONS ONLY AT
HIGHER CONCENTRATIONS 389
9.5 HOMOCOAGULATION AND HETEROCOAGULATION OCCUR
SIMULTANEOUSLY IN MANY COLLOIDAL SYSTEMS 392
9.6 AEROSOLS INVOLVE PARTICLES IN THE GAS PHASE 397
9.6.1 SOME AEROSOLS OCCUR NATURALLY, BUT
MANY OTHERS ARE PRODUCED IN
TECHNICAL PROCESSES 397
9.6.2 AEROSOL PROPERTIES DIFFER QUANTITATIVELY
FROM THOSE OF OTHER COLLOIDAL DISPERSIONS
IN THREE RESPECTS 398
9.6.3 AEROSOL PARTICLES INTERACT BY VAN DER WAALS
FORCES AS WELL AS ELECTROSTATICALLY AND
HYDRODYNAMICALLY 399
9.6.4 AEROSOL PARTICLES POSSESS THREE
MOTIONAL REGIMES 401
EXERCISES 403
LITERATURE 405
10 / PHASE EQUILIBRIA, PHASE DIAGRAMS, AND
THEIR APPLICATION 407
10.1 PHASE DIAGRAMS DEPICTING COLLOIDAL SYSTEMS
ARE GENERALLY RICHER THAN THOSE FOR
MOLECULAR SYSTEMS 411
10.1.1 SEVERAL UNCOMMON AGGREGATION STATES
APPEAR IN COLLOIDAL SYSTEMS 411
10.1.2 THE GIBBS PHASE RULE GUIDES THE
THERMODYNAMIC DESCRIPTION OF PHASE
EQUILIBRIA 415
10.1.3 IN A MULTICOMPONENT SYSTEM WITH TWO
PHASES IN EQUILIBRIUM, THE CHEMICAL
POTENTIAL OF EACH COMPONENT IS THE SAME
IN BOTH PHASES 417
10.1.4 PHASE DIAGRAMS CONVENIENTLY REPRESENT
PHASE EQUILIBRIA 418
10.1.5 DETERMINING PHASE EQUILIBRIA IS A
DEMANDING TASK 421
10.2 EXAMPLES ILLUSTRATE THE IMPORTANCE OF PHASE
EQUILIBRIA FOR COLLOIDAL SYSTEMS 423
10.2.1 PURELY REPULSIVE INTERACTIONS CAN PROMOTE
THE FORMATION OF ORDERED PHASES 424
10.2.2 IONIC SURFACTANTS SELF-ASSEMBLE INTO A
MULTIPLICITY OF ISOTROPIC AND LIQUID
CRYSTALLINE PHASES 425
10.2.3 TEMPERATURE CHANGES DRAMATICALLY AFFECT
PHASE EQUILIBRIA FOR NONIONIC
SURFACTANTS 427
10.2.4 BLOCK COPOLYMERS EXHIBIT AS RICH A PHASE
BEHAVIOR AS SURFACTANTS 428
10.2.5 MONOMOLECULAR FILMS SHOW A RICH
PHASE BEHAVIOR 429
10.3 WE OBTAIN A BETTER UNDERSTANDING OF THE FACTORS
THAT DETERMINE PHASE EQUILIBRIA BY CALCULATING
PHASE DIAGRAMS 431
10.3.1 THE REGULAR SOLUTION MODEL ILLUSTRATES
LIQUID-LIQUID PHASE SEPARATION 431
10.3.2 LIQUID STATE MISCIBILITY AND SOLID
STATE DEMIXING LEAD TO A CHARACTERISTIC
PHASE DIAGRAM 434
10.3.3 TWO LIPIDS THAT EXHIBIT DIFFERENT MELTING
POINTS BUT IDEAL MIXING IN BOTH THE GEL
AND LIQUID CRYSTALLINE PHASES PRODUCE A
SIMPLE PHASE DIAGRAM 436
10.3.4 THE PRESENCE OF AN IMPURITY BROADENS A
PHASE TRANSITION BY INTRODUCING A TWO
PHASE AREA 436
10.3.5 THE SHORT-RANGE STABILIZING FORCE
INFLUENCES THE EQUILIBRIUM BETWEEN
LIQUID CRYSTALLINE AND GEL PHASES IN
LECITHIN-WATER SYSTEMS 440
10.4 CONTINUOUS PHASE TRANSITIONS CAN BE DESCRIBED BY
CRITICAL EXPONENTS 443
10.4.1 PHASE CHANGES CAN BE CONTINUOUS 443
10.4.2 CONTINUOUS TRANSITIONS ARE
CHARACTERIZED BY THE VALUES OF CRITICAL
EXPONENTS 445
10.4.3 WE CAN USE THE REGULAR SOLUTION
THEORY TO ILLUSTRATE THE ISING MODEL
AND TO CALCULATE MEAN FIELD
CRITICAL EXPONENTS 446
10.4.4 NONIONIC SURFACTANTS SHOW A CRITICAL
DEMIXING WHEN THE TEMPERATURE
INCREASES 448
10.4.5 THE TERM CONTINUOUS PHASE TRANSITION
SOMETIMES CHARACTERIZES LESS WELL
DEFINED PHASE CHANGES 448
EXERCISES 449
LITERATURE 450
11 / MICRO- AND MACROEMULSIONS 451
11.1 SURFACTANT FILMS AT INTERFACES DETERMINE MANY
PROPERTIES OF EMULSIONS 456
11.1.1 WE CAN CHARACTERIZE THE ELASTIC PROPERTIES
OF A FILM THROUGH PHENOMENOLOGICAL
CONSTANTS 456
11.1.2 WITH SOME EFFORT WE CAN MEASURE
ELASTIC CONSTANTS 459
11.2 MICROEMULSIONS ARE THERMODYNAMICALLY STABLE
ISOTROPIC SOLUTIONS THAT DISPLAY A RANGE OF
SELF
ASSEMBLY STRUCTURES 461
11.2.1 MICROEMULSIONS CAN CONTAIN SPHERICAL
DROPS OR BICONTINUOUS STRUCTURES 461
11.2.2 TEMPERATURE CONTROLS THE STRUCTURE AND
STABILITY OF NONIONIC SURFACTANT
MICROEMULSIONS 463
11.2.3 WE OFTEN NEED ELECTROLYTES TO
OBTAIN MICROEMULSIONS CONTAINING
IONIC SURFACTANTS 470
11.2 A DDAB DOUBLE-CHAIN SURFACTANTS SHOW
BICONTINUOUS INVERTED STRUCTURES 473
11.3 MACROEMULSIONS CONSIST OF DROPS OF ONE LIQUID
IN ANOTHER 479
11.3.1 FORMING MACROEMULSIONS USUALLY
REQUIRES MECHANICAL OR CHEMICAL
ENERGY 480
11.3.2 TURBULENT FLOW DURING THE MIXING PROCESS
GOVERNS DROPLET SIZE 482
11.3.3 A CHEMICAL NONEQUILIBRIUM STATE CAN
INDUCE EMULSIFICATION 483
11.3.4 A NUMBER OF DIFFERENT MECHANISMS AFFECT
THE EVOLUTION OF AN EMULSION 485
11.3.5 TO STABILIZE AN EMULSION, THE
DISPERSED PHASE IN DIFFERENT DROPS SHOULD
BE PREVENTED FROM REACHING
MOLECULAR CONTACT 487
11.3.6 EMULSION STRUCTURE AND STABILITY
DEPEND ON THE PROPERTIES OF THE
SURFACTANT FILM 490
11.3.7 CATALYZING COALESCENCE DESTABILIZES
AN EMULSION 494
11.3.8 CONCENTRATED EMULSIONS AND FOAMS
POSSESS MANY SIMILARITIES 495
EXERCISES 496
LITERATURE 498
NOMENCLATURE 499
REFERENCES 502
INDEX 503 |
any_adam_object | 1 |
author | Evans, Douglas Fennell Wennerström, Håkan |
author_facet | Evans, Douglas Fennell Wennerström, Håkan |
author_role | aut aut |
author_sort | Evans, Douglas Fennell |
author_variant | d f e df dfe h w hw |
building | Verbundindex |
bvnumber | BV009719826 |
callnumber-first | Q - Science |
callnumber-label | QD549 |
callnumber-raw | QD549 |
callnumber-search | QD549 |
callnumber-sort | QD 3549 |
callnumber-subject | QD - Chemistry |
classification_rvk | VE 8000 |
classification_tum | CHE 180f CHE 178f CHE 185f |
ctrlnum | (OCoLC)29704263 (DE-599)BVBBV009719826 |
dewey-full | 541.3/45 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 541 - Physical chemistry |
dewey-raw | 541.3/45 |
dewey-search | 541.3/45 |
dewey-sort | 3541.3 245 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Physik Chemie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV009719826</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20030903</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">940718s1994 gw ad|| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">941385302</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1560815256</subfield><subfield code="9">1-56081-525-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)29704263</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009719826</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD549</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">541.3/45</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 8000</subfield><subfield code="0">(DE-625)147145:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 180f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 178f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 185f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Evans, Douglas Fennell</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The colloidal domain</subfield><subfield code="b">where physics, chemistry, biology, and technology meet</subfield><subfield code="c">D. Fennell Evans ; Håkan Wennerström</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY [u.a.]</subfield><subfield code="b">VCH</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXII, 515 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advances in interfacial engineering series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chimie des surfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Colloïden</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Colloïdes</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Oppervlakken</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Colloids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface Properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface chemistry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kolloidphysik</subfield><subfield code="0">(DE-588)4713763-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kolloidchemie</subfield><subfield code="0">(DE-588)4134420-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kolloid</subfield><subfield code="0">(DE-588)4164695-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Oberflächenchemie</subfield><subfield code="0">(DE-588)4126166-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grenzflächenchemie</subfield><subfield code="0">(DE-588)4246080-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Grenzflächenchemie</subfield><subfield code="0">(DE-588)4246080-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Oberflächenchemie</subfield><subfield code="0">(DE-588)4126166-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kolloidchemie</subfield><subfield code="0">(DE-588)4134420-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Kolloid</subfield><subfield code="0">(DE-588)4164695-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Kolloidphysik</subfield><subfield code="0">(DE-588)4713763-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wennerström, Håkan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006429992&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006429992</subfield></datafield></record></collection> |
id | DE-604.BV009719826 |
illustrated | Illustrated |
indexdate | 2025-01-08T04:00:40Z |
institution | BVB |
isbn | 1560815256 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006429992 |
oclc_num | 29704263 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-29 DE-29T DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-703 DE-19 DE-BY-UBM DE-862 DE-BY-FWS DE-634 DE-83 DE-11 DE-188 |
owner_facet | DE-355 DE-BY-UBR DE-29 DE-29T DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-703 DE-19 DE-BY-UBM DE-862 DE-BY-FWS DE-634 DE-83 DE-11 DE-188 |
physical | XXXII, 515 S. Ill., graph. Darst. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | VCH |
record_format | marc |
series2 | Advances in interfacial engineering series |
spellingShingle | Evans, Douglas Fennell Wennerström, Håkan The colloidal domain where physics, chemistry, biology, and technology meet Chimie des surfaces Colloïden gtt Colloïdes Oppervlakken gtt Colloids Surface Properties Surface chemistry Kolloidphysik (DE-588)4713763-0 gnd Kolloidchemie (DE-588)4134420-0 gnd Kolloid (DE-588)4164695-2 gnd Oberflächenchemie (DE-588)4126166-5 gnd Grenzflächenchemie (DE-588)4246080-3 gnd |
subject_GND | (DE-588)4713763-0 (DE-588)4134420-0 (DE-588)4164695-2 (DE-588)4126166-5 (DE-588)4246080-3 |
title | The colloidal domain where physics, chemistry, biology, and technology meet |
title_auth | The colloidal domain where physics, chemistry, biology, and technology meet |
title_exact_search | The colloidal domain where physics, chemistry, biology, and technology meet |
title_full | The colloidal domain where physics, chemistry, biology, and technology meet D. Fennell Evans ; Håkan Wennerström |
title_fullStr | The colloidal domain where physics, chemistry, biology, and technology meet D. Fennell Evans ; Håkan Wennerström |
title_full_unstemmed | The colloidal domain where physics, chemistry, biology, and technology meet D. Fennell Evans ; Håkan Wennerström |
title_short | The colloidal domain |
title_sort | the colloidal domain where physics chemistry biology and technology meet |
title_sub | where physics, chemistry, biology, and technology meet |
topic | Chimie des surfaces Colloïden gtt Colloïdes Oppervlakken gtt Colloids Surface Properties Surface chemistry Kolloidphysik (DE-588)4713763-0 gnd Kolloidchemie (DE-588)4134420-0 gnd Kolloid (DE-588)4164695-2 gnd Oberflächenchemie (DE-588)4126166-5 gnd Grenzflächenchemie (DE-588)4246080-3 gnd |
topic_facet | Chimie des surfaces Colloïden Colloïdes Oppervlakken Colloids Surface Properties Surface chemistry Kolloidphysik Kolloidchemie Kolloid Oberflächenchemie Grenzflächenchemie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006429992&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT evansdouglasfennell thecolloidaldomainwherephysicschemistrybiologyandtechnologymeet AT wennerstromhakan thecolloidaldomainwherephysicschemistrybiologyandtechnologymeet |
Inhaltsverzeichnis
THWS Schweinfurt Magazin
Signatur: |
2801 1991:6103 |
---|---|
Exemplar 1 | ausleihbar Verfügbar Bestellen |