The roots of backpropagation: from ordered derivatives to neural networks and political forecasting
Scientists, engineers, statisticians, operations researchers, and other investigators involved in neural networks have long sought direct access to Paul Werbos's groundbreaking, much-cited 1974 Harvard doctoral thesis, The Roots of Backpropagation, which laid the foundation of backpropagation
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY u.a.
Wiley
1994
|
Schriftenreihe: | Adaptive and learning systems for signal processing, communications and control
A Wiley interscience publication |
Schlagworte: | |
Zusammenfassung: | Scientists, engineers, statisticians, operations researchers, and other investigators involved in neural networks have long sought direct access to Paul Werbos's groundbreaking, much-cited 1974 Harvard doctoral thesis, The Roots of Backpropagation, which laid the foundation of backpropagation Now, with the publication of its full text, these practitioners can go straight to the original material and gain a deeper, practical understanding of this unique mathematical approach to social studies and related fields. In addition, Werbos has provided three more recent research papers, which were inspired by his original work, and a new guide to the field Originally written for readers who lacked any knowledge of neural nets, The Roots of Backpropagation firmly establishes both its historical and continuing significance as it demonstrates the ongoing value and new potential of backpropagation; creates a wealth of sound mathematical tools useful across disciplines; sets the stage for the emerging area of fast automatic differentiation; describes new designs for forecasting and control which exploit backpropagation; unifies concepts from Freud, Jung, biologists, and others into a new mathematical picture of the human mind and how it works; and certifies the viability of Deutsch's model of nationalism as a predictive tool - as well as the utility of extensions of this central paradigm |
Beschreibung: | XII, 319 S. graph. Darst. |
ISBN: | 0471598976 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV009709931 | ||
003 | DE-604 | ||
005 | 19960417 | ||
007 | t| | ||
008 | 940719s1994 xx d||| |||| 00||| eng d | ||
020 | |a 0471598976 |9 0-471-59897-6 | ||
035 | |a (OCoLC)28337564 | ||
035 | |a (DE-599)BVBBV009709931 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-29T |a DE-91 | ||
050 | 0 | |a QA76.87 | |
082 | 0 | |a 003.5 |2 20 | |
084 | |a MR 2950 |0 (DE-625)123498: |2 rvk | ||
084 | |a QH 234 |0 (DE-625)141549: |2 rvk | ||
084 | |a DAT 708f |2 stub | ||
084 | |a DAT 717f |2 stub | ||
100 | 1 | |a Werbos, Paul J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The roots of backpropagation |b from ordered derivatives to neural networks and political forecasting |c Paul John Werbos |
264 | 1 | |a New York, NY u.a. |b Wiley |c 1994 | |
300 | |a XII, 319 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Adaptive and learning systems for signal processing, communications and control | |
490 | 0 | |a A Wiley interscience publication | |
520 | 3 | |a Scientists, engineers, statisticians, operations researchers, and other investigators involved in neural networks have long sought direct access to Paul Werbos's groundbreaking, much-cited 1974 Harvard doctoral thesis, The Roots of Backpropagation, which laid the foundation of backpropagation | |
520 | |a Now, with the publication of its full text, these practitioners can go straight to the original material and gain a deeper, practical understanding of this unique mathematical approach to social studies and related fields. In addition, Werbos has provided three more recent research papers, which were inspired by his original work, and a new guide to the field | ||
520 | |a Originally written for readers who lacked any knowledge of neural nets, The Roots of Backpropagation firmly establishes both its historical and continuing significance as it demonstrates the ongoing value and new potential of backpropagation; creates a wealth of sound mathematical tools useful across disciplines; sets the stage for the emerging area of fast automatic differentiation; describes new designs for forecasting and control which exploit backpropagation; unifies concepts from Freud, Jung, biologists, and others into a new mathematical picture of the human mind and how it works; and certifies the viability of Deutsch's model of nationalism as a predictive tool - as well as the utility of extensions of this central paradigm | ||
650 | 7 | |a Analise de regressao e de correlacao |2 larpcal | |
650 | 7 | |a Inteligencia artificial |2 larpcal | |
650 | 7 | |a Neurale netwerken |2 gtt | |
650 | 7 | |a Regressieanalyse |2 gtt | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 4 | |a Prediction theory | |
650 | 4 | |a Regression analysis | |
650 | 0 | 7 | |a Regressionsanalyse |0 (DE-588)4129903-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Prognose |0 (DE-588)4047390-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistisches Modell |0 (DE-588)4121722-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Backpropagation-Algorithmus |0 (DE-588)4354627-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Prognose |0 (DE-588)4047390-9 |D s |
689 | 0 | 1 | |a Statistisches Modell |0 (DE-588)4121722-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Regressionsanalyse |0 (DE-588)4129903-6 |D s |
689 | 1 | 1 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Backpropagation-Algorithmus |0 (DE-588)4354627-4 |D s |
689 | 2 | |5 DE-604 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-006422027 |
Datensatz im Suchindex
_version_ | 1817681121602699264 |
---|---|
adam_text | |
any_adam_object | |
author | Werbos, Paul J. |
author_facet | Werbos, Paul J. |
author_role | aut |
author_sort | Werbos, Paul J. |
author_variant | p j w pj pjw |
building | Verbundindex |
bvnumber | BV009709931 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.87 |
callnumber-search | QA76.87 |
callnumber-sort | QA 276.87 |
callnumber-subject | QA - Mathematics |
classification_rvk | MR 2950 QH 234 |
classification_tum | DAT 708f DAT 717f |
ctrlnum | (OCoLC)28337564 (DE-599)BVBBV009709931 |
dewey-full | 003.5 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003.5 |
dewey-search | 003.5 |
dewey-sort | 13.5 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Soziologie Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV009709931</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19960417</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">940719s1994 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471598976</subfield><subfield code="9">0-471-59897-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)28337564</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009709931</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.87</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003.5</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MR 2950</subfield><subfield code="0">(DE-625)123498:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 234</subfield><subfield code="0">(DE-625)141549:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 717f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Werbos, Paul J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The roots of backpropagation</subfield><subfield code="b">from ordered derivatives to neural networks and political forecasting</subfield><subfield code="c">Paul John Werbos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY u.a.</subfield><subfield code="b">Wiley</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 319 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Adaptive and learning systems for signal processing, communications and control</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">A Wiley interscience publication</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Scientists, engineers, statisticians, operations researchers, and other investigators involved in neural networks have long sought direct access to Paul Werbos's groundbreaking, much-cited 1974 Harvard doctoral thesis, The Roots of Backpropagation, which laid the foundation of backpropagation</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Now, with the publication of its full text, these practitioners can go straight to the original material and gain a deeper, practical understanding of this unique mathematical approach to social studies and related fields. In addition, Werbos has provided three more recent research papers, which were inspired by his original work, and a new guide to the field</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Originally written for readers who lacked any knowledge of neural nets, The Roots of Backpropagation firmly establishes both its historical and continuing significance as it demonstrates the ongoing value and new potential of backpropagation; creates a wealth of sound mathematical tools useful across disciplines; sets the stage for the emerging area of fast automatic differentiation; describes new designs for forecasting and control which exploit backpropagation; unifies concepts from Freud, Jung, biologists, and others into a new mathematical picture of the human mind and how it works; and certifies the viability of Deutsch's model of nationalism as a predictive tool - as well as the utility of extensions of this central paradigm</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analise de regressao e de correlacao</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inteligencia artificial</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neurale netwerken</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Regressieanalyse</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prediction theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regression analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regressionsanalyse</subfield><subfield code="0">(DE-588)4129903-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prognose</subfield><subfield code="0">(DE-588)4047390-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistisches Modell</subfield><subfield code="0">(DE-588)4121722-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Backpropagation-Algorithmus</subfield><subfield code="0">(DE-588)4354627-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Prognose</subfield><subfield code="0">(DE-588)4047390-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistisches Modell</subfield><subfield code="0">(DE-588)4121722-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Regressionsanalyse</subfield><subfield code="0">(DE-588)4129903-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Backpropagation-Algorithmus</subfield><subfield code="0">(DE-588)4354627-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006422027</subfield></datafield></record></collection> |
id | DE-604.BV009709931 |
illustrated | Illustrated |
indexdate | 2024-12-06T09:03:20Z |
institution | BVB |
isbn | 0471598976 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006422027 |
oclc_num | 28337564 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-29T DE-91 DE-BY-TUM |
owner_facet | DE-355 DE-BY-UBR DE-29T DE-91 DE-BY-TUM |
physical | XII, 319 S. graph. Darst. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Wiley |
record_format | marc |
series2 | Adaptive and learning systems for signal processing, communications and control A Wiley interscience publication |
spelling | Werbos, Paul J. Verfasser aut The roots of backpropagation from ordered derivatives to neural networks and political forecasting Paul John Werbos New York, NY u.a. Wiley 1994 XII, 319 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Adaptive and learning systems for signal processing, communications and control A Wiley interscience publication Scientists, engineers, statisticians, operations researchers, and other investigators involved in neural networks have long sought direct access to Paul Werbos's groundbreaking, much-cited 1974 Harvard doctoral thesis, The Roots of Backpropagation, which laid the foundation of backpropagation Now, with the publication of its full text, these practitioners can go straight to the original material and gain a deeper, practical understanding of this unique mathematical approach to social studies and related fields. In addition, Werbos has provided three more recent research papers, which were inspired by his original work, and a new guide to the field Originally written for readers who lacked any knowledge of neural nets, The Roots of Backpropagation firmly establishes both its historical and continuing significance as it demonstrates the ongoing value and new potential of backpropagation; creates a wealth of sound mathematical tools useful across disciplines; sets the stage for the emerging area of fast automatic differentiation; describes new designs for forecasting and control which exploit backpropagation; unifies concepts from Freud, Jung, biologists, and others into a new mathematical picture of the human mind and how it works; and certifies the viability of Deutsch's model of nationalism as a predictive tool - as well as the utility of extensions of this central paradigm Analise de regressao e de correlacao larpcal Inteligencia artificial larpcal Neurale netwerken gtt Regressieanalyse gtt Neural networks (Computer science) Prediction theory Regression analysis Regressionsanalyse (DE-588)4129903-6 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Prognose (DE-588)4047390-9 gnd rswk-swf Statistisches Modell (DE-588)4121722-6 gnd rswk-swf Backpropagation-Algorithmus (DE-588)4354627-4 gnd rswk-swf Prognose (DE-588)4047390-9 s Statistisches Modell (DE-588)4121722-6 s DE-604 Regressionsanalyse (DE-588)4129903-6 s Neuronales Netz (DE-588)4226127-2 s Backpropagation-Algorithmus (DE-588)4354627-4 s |
spellingShingle | Werbos, Paul J. The roots of backpropagation from ordered derivatives to neural networks and political forecasting Analise de regressao e de correlacao larpcal Inteligencia artificial larpcal Neurale netwerken gtt Regressieanalyse gtt Neural networks (Computer science) Prediction theory Regression analysis Regressionsanalyse (DE-588)4129903-6 gnd Neuronales Netz (DE-588)4226127-2 gnd Prognose (DE-588)4047390-9 gnd Statistisches Modell (DE-588)4121722-6 gnd Backpropagation-Algorithmus (DE-588)4354627-4 gnd |
subject_GND | (DE-588)4129903-6 (DE-588)4226127-2 (DE-588)4047390-9 (DE-588)4121722-6 (DE-588)4354627-4 |
title | The roots of backpropagation from ordered derivatives to neural networks and political forecasting |
title_auth | The roots of backpropagation from ordered derivatives to neural networks and political forecasting |
title_exact_search | The roots of backpropagation from ordered derivatives to neural networks and political forecasting |
title_full | The roots of backpropagation from ordered derivatives to neural networks and political forecasting Paul John Werbos |
title_fullStr | The roots of backpropagation from ordered derivatives to neural networks and political forecasting Paul John Werbos |
title_full_unstemmed | The roots of backpropagation from ordered derivatives to neural networks and political forecasting Paul John Werbos |
title_short | The roots of backpropagation |
title_sort | the roots of backpropagation from ordered derivatives to neural networks and political forecasting |
title_sub | from ordered derivatives to neural networks and political forecasting |
topic | Analise de regressao e de correlacao larpcal Inteligencia artificial larpcal Neurale netwerken gtt Regressieanalyse gtt Neural networks (Computer science) Prediction theory Regression analysis Regressionsanalyse (DE-588)4129903-6 gnd Neuronales Netz (DE-588)4226127-2 gnd Prognose (DE-588)4047390-9 gnd Statistisches Modell (DE-588)4121722-6 gnd Backpropagation-Algorithmus (DE-588)4354627-4 gnd |
topic_facet | Analise de regressao e de correlacao Inteligencia artificial Neurale netwerken Regressieanalyse Neural networks (Computer science) Prediction theory Regression analysis Regressionsanalyse Neuronales Netz Prognose Statistisches Modell Backpropagation-Algorithmus |
work_keys_str_mv | AT werbospaulj therootsofbackpropagationfromorderedderivativestoneuralnetworksandpoliticalforecasting |