Fundamental structures of algebra and discrete mathematics:
Structures are defined by laws of composition, rules of generation, and relations. The objects on which these laws operate may be numbers, geometric objects like points and lines, or abstract symbols. Algebra is the study of mathematical laws, with a search for general principles that do not depend...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Wiley
1994
|
Schriftenreihe: | A Wiley-Intersience publication
|
Schlagworte: | |
Zusammenfassung: | Structures are defined by laws of composition, rules of generation, and relations. The objects on which these laws operate may be numbers, geometric objects like points and lines, or abstract symbols. Algebra is the study of mathematical laws, with a search for general principles that do not depend on what the objects are. Fundamental Structures of Algebra and Discrete Mathematics is an introduction to the twelve basic kinds of structures - sets, ordered sets, groups, rings, fields, vector spaces, graphs, lattices, matroids, topological spaces, universal algebras, and categories - that underlie algebra and discrete mathematics. Beginning with the most basic type of structure, sets, this unique reference provides a detailed look at the theoretical underpinning of each structure, shedding light on the significance of each structure as well as their interrelation Using a self-contained approach that requires little previous knowledge of mathematical definitions, results, or methods, the book examines selected key aspects of these structures, including closure systems, generators, substructures, homomorphisms and congruences, equational axioms, connections with basic set theory, finiteness conditions, combinatorial properties, and discrete algorithmic procedures. Several classical results are proved, including the Abel-Ruffini theorem on unsolvability by radicals, Helly's theorem on intersecting convex sets, and a simplified version of the Godel-Herbrand completeness theorem. Many of the results are relevant to current research. Highly interactive in approach, the book features numerous exercises and examples woven throughout the text that allow the reader to become fully acquainted with the character and function of each structure. Additional questions, designed to stretch the reader's analytical skills, appear at the end of each section Similar to a grammar book that explains the fundamental structures essential to mastering a language, Fundamental Structures of Algebra and Discrete Mathematics is a systematic examination of the basic algebraic structures needed to understand and manipulate advanced mathematical concepts. A cornerstone reference that is both a clear primer and rigorous study guide, Fundamental Structures of Algebra and Discrete Mathematics is indispensable to the student and professional seeking to learn or use the methods of modern algebra |
Beschreibung: | XV, 344 S. graph. Darst. |
ISBN: | 0471571806 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV009695244 | ||
003 | DE-604 | ||
005 | 19960711 | ||
007 | t | ||
008 | 940712s1994 d||| |||| 00||| eng d | ||
020 | |a 0471571806 |9 0-471-57180-6 | ||
035 | |a (OCoLC)28294690 | ||
035 | |a (DE-599)BVBBV009695244 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-91G |a DE-703 |a DE-20 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA155 | |
082 | 0 | |a 512/.02 |2 20 | |
084 | |a SK 200 |0 (DE-625)143223: |2 rvk | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a MAT 110f |2 stub | ||
084 | |a MAT 050f |2 stub | ||
100 | 1 | |a Foldes, Stephan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fundamental structures of algebra and discrete mathematics |c Stephan Foldes |
264 | 1 | |a New York [u.a.] |b Wiley |c 1994 | |
300 | |a XV, 344 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a A Wiley-Intersience publication | |
520 | 3 | |a Structures are defined by laws of composition, rules of generation, and relations. The objects on which these laws operate may be numbers, geometric objects like points and lines, or abstract symbols. Algebra is the study of mathematical laws, with a search for general principles that do not depend on what the objects are. Fundamental Structures of Algebra and Discrete Mathematics is an introduction to the twelve basic kinds of structures - sets, ordered sets, groups, rings, fields, vector spaces, graphs, lattices, matroids, topological spaces, universal algebras, and categories - that underlie algebra and discrete mathematics. Beginning with the most basic type of structure, sets, this unique reference provides a detailed look at the theoretical underpinning of each structure, shedding light on the significance of each structure as well as their interrelation | |
520 | 3 | |a Using a self-contained approach that requires little previous knowledge of mathematical definitions, results, or methods, the book examines selected key aspects of these structures, including closure systems, generators, substructures, homomorphisms and congruences, equational axioms, connections with basic set theory, finiteness conditions, combinatorial properties, and discrete algorithmic procedures. Several classical results are proved, including the Abel-Ruffini theorem on unsolvability by radicals, Helly's theorem on intersecting convex sets, and a simplified version of the Godel-Herbrand completeness theorem. Many of the results are relevant to current research. Highly interactive in approach, the book features numerous exercises and examples woven throughout the text that allow the reader to become fully acquainted with the character and function of each structure. Additional questions, designed to stretch the reader's analytical skills, appear at the end of each section | |
520 | 3 | |a Similar to a grammar book that explains the fundamental structures essential to mastering a language, Fundamental Structures of Algebra and Discrete Mathematics is a systematic examination of the basic algebraic structures needed to understand and manipulate advanced mathematical concepts. A cornerstone reference that is both a clear primer and rigorous study guide, Fundamental Structures of Algebra and Discrete Mathematics is indispensable to the student and professional seeking to learn or use the methods of modern algebra | |
650 | 7 | |a Algebra |2 gtt | |
650 | 4 | |a Algèbre | |
650 | 7 | |a Algèbre |2 ram | |
650 | 7 | |a Informatique - Mathématiques |2 ram | |
650 | 7 | |a Numerieke wiskunde |2 gtt | |
650 | 7 | |a algèbre universelle |2 inriac | |
650 | 7 | |a algèbre |2 inriac | |
650 | 7 | |a anneau |2 inriac | |
650 | 7 | |a catégorie |2 inriac | |
650 | 7 | |a champ |2 inriac | |
650 | 7 | |a ensemble ordonné |2 inriac | |
650 | 7 | |a ensemble |2 inriac | |
650 | 7 | |a espace topologique |2 inriac | |
650 | 7 | |a espace vectoriel |2 inriac | |
650 | 7 | |a graphe |2 inriac | |
650 | 7 | |a groupe |2 inriac | |
650 | 7 | |a mathématiques discrètes |2 inriac | |
650 | 7 | |a matroïde |2 inriac | |
650 | 7 | |a treillis |2 inriac | |
650 | 4 | |a Algebra | |
650 | 0 | 7 | |a Algebraische Struktur |0 (DE-588)4001166-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diskrete Mathematik |0 (DE-588)4129143-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Diskrete Mathematik |0 (DE-588)4129143-8 |D s |
689 | 0 | 1 | |a Algebraische Struktur |0 (DE-588)4001166-5 |D s |
689 | 0 | |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006412440 |
Datensatz im Suchindex
_version_ | 1804124041185853440 |
---|---|
any_adam_object | |
author | Foldes, Stephan |
author_facet | Foldes, Stephan |
author_role | aut |
author_sort | Foldes, Stephan |
author_variant | s f sf |
building | Verbundindex |
bvnumber | BV009695244 |
callnumber-first | Q - Science |
callnumber-label | QA155 |
callnumber-raw | QA155 |
callnumber-search | QA155 |
callnumber-sort | QA 3155 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 200 SK 230 |
classification_tum | MAT 110f MAT 050f |
ctrlnum | (OCoLC)28294690 (DE-599)BVBBV009695244 |
dewey-full | 512/.02 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.02 |
dewey-search | 512/.02 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04459nam a2200673 c 4500</leader><controlfield tag="001">BV009695244</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19960711 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940712s1994 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471571806</subfield><subfield code="9">0-471-57180-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)28294690</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009695244</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA155</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.02</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 200</subfield><subfield code="0">(DE-625)143223:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 110f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 050f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Foldes, Stephan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamental structures of algebra and discrete mathematics</subfield><subfield code="c">Stephan Foldes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Wiley</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 344 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">A Wiley-Intersience publication</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Structures are defined by laws of composition, rules of generation, and relations. The objects on which these laws operate may be numbers, geometric objects like points and lines, or abstract symbols. Algebra is the study of mathematical laws, with a search for general principles that do not depend on what the objects are. Fundamental Structures of Algebra and Discrete Mathematics is an introduction to the twelve basic kinds of structures - sets, ordered sets, groups, rings, fields, vector spaces, graphs, lattices, matroids, topological spaces, universal algebras, and categories - that underlie algebra and discrete mathematics. Beginning with the most basic type of structure, sets, this unique reference provides a detailed look at the theoretical underpinning of each structure, shedding light on the significance of each structure as well as their interrelation</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Using a self-contained approach that requires little previous knowledge of mathematical definitions, results, or methods, the book examines selected key aspects of these structures, including closure systems, generators, substructures, homomorphisms and congruences, equational axioms, connections with basic set theory, finiteness conditions, combinatorial properties, and discrete algorithmic procedures. Several classical results are proved, including the Abel-Ruffini theorem on unsolvability by radicals, Helly's theorem on intersecting convex sets, and a simplified version of the Godel-Herbrand completeness theorem. Many of the results are relevant to current research. Highly interactive in approach, the book features numerous exercises and examples woven throughout the text that allow the reader to become fully acquainted with the character and function of each structure. Additional questions, designed to stretch the reader's analytical skills, appear at the end of each section</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Similar to a grammar book that explains the fundamental structures essential to mastering a language, Fundamental Structures of Algebra and Discrete Mathematics is a systematic examination of the basic algebraic structures needed to understand and manipulate advanced mathematical concepts. A cornerstone reference that is both a clear primer and rigorous study guide, Fundamental Structures of Algebra and Discrete Mathematics is indispensable to the student and professional seeking to learn or use the methods of modern algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebra</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algèbre</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algèbre</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Informatique - Mathématiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerieke wiskunde</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">algèbre universelle</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">algèbre</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">anneau</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">catégorie</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">champ</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">ensemble ordonné</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">ensemble</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">espace topologique</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">espace vectoriel</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">graphe</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">groupe</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">mathématiques discrètes</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">matroïde</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">treillis</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Struktur</subfield><subfield code="0">(DE-588)4001166-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskrete Mathematik</subfield><subfield code="0">(DE-588)4129143-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Diskrete Mathematik</subfield><subfield code="0">(DE-588)4129143-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebraische Struktur</subfield><subfield code="0">(DE-588)4001166-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006412440</subfield></datafield></record></collection> |
id | DE-604.BV009695244 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:39:21Z |
institution | BVB |
isbn | 0471571806 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006412440 |
oclc_num | 28294690 |
open_access_boolean | |
owner | DE-29T DE-91G DE-BY-TUM DE-703 DE-20 DE-11 DE-188 |
owner_facet | DE-29T DE-91G DE-BY-TUM DE-703 DE-20 DE-11 DE-188 |
physical | XV, 344 S. graph. Darst. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Wiley |
record_format | marc |
series2 | A Wiley-Intersience publication |
spelling | Foldes, Stephan Verfasser aut Fundamental structures of algebra and discrete mathematics Stephan Foldes New York [u.a.] Wiley 1994 XV, 344 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier A Wiley-Intersience publication Structures are defined by laws of composition, rules of generation, and relations. The objects on which these laws operate may be numbers, geometric objects like points and lines, or abstract symbols. Algebra is the study of mathematical laws, with a search for general principles that do not depend on what the objects are. Fundamental Structures of Algebra and Discrete Mathematics is an introduction to the twelve basic kinds of structures - sets, ordered sets, groups, rings, fields, vector spaces, graphs, lattices, matroids, topological spaces, universal algebras, and categories - that underlie algebra and discrete mathematics. Beginning with the most basic type of structure, sets, this unique reference provides a detailed look at the theoretical underpinning of each structure, shedding light on the significance of each structure as well as their interrelation Using a self-contained approach that requires little previous knowledge of mathematical definitions, results, or methods, the book examines selected key aspects of these structures, including closure systems, generators, substructures, homomorphisms and congruences, equational axioms, connections with basic set theory, finiteness conditions, combinatorial properties, and discrete algorithmic procedures. Several classical results are proved, including the Abel-Ruffini theorem on unsolvability by radicals, Helly's theorem on intersecting convex sets, and a simplified version of the Godel-Herbrand completeness theorem. Many of the results are relevant to current research. Highly interactive in approach, the book features numerous exercises and examples woven throughout the text that allow the reader to become fully acquainted with the character and function of each structure. Additional questions, designed to stretch the reader's analytical skills, appear at the end of each section Similar to a grammar book that explains the fundamental structures essential to mastering a language, Fundamental Structures of Algebra and Discrete Mathematics is a systematic examination of the basic algebraic structures needed to understand and manipulate advanced mathematical concepts. A cornerstone reference that is both a clear primer and rigorous study guide, Fundamental Structures of Algebra and Discrete Mathematics is indispensable to the student and professional seeking to learn or use the methods of modern algebra Algebra gtt Algèbre Algèbre ram Informatique - Mathématiques ram Numerieke wiskunde gtt algèbre universelle inriac algèbre inriac anneau inriac catégorie inriac champ inriac ensemble ordonné inriac ensemble inriac espace topologique inriac espace vectoriel inriac graphe inriac groupe inriac mathématiques discrètes inriac matroïde inriac treillis inriac Algebra Algebraische Struktur (DE-588)4001166-5 gnd rswk-swf Diskrete Mathematik (DE-588)4129143-8 gnd rswk-swf Diskrete Mathematik (DE-588)4129143-8 s Algebraische Struktur (DE-588)4001166-5 s DE-604 |
spellingShingle | Foldes, Stephan Fundamental structures of algebra and discrete mathematics Algebra gtt Algèbre Algèbre ram Informatique - Mathématiques ram Numerieke wiskunde gtt algèbre universelle inriac algèbre inriac anneau inriac catégorie inriac champ inriac ensemble ordonné inriac ensemble inriac espace topologique inriac espace vectoriel inriac graphe inriac groupe inriac mathématiques discrètes inriac matroïde inriac treillis inriac Algebra Algebraische Struktur (DE-588)4001166-5 gnd Diskrete Mathematik (DE-588)4129143-8 gnd |
subject_GND | (DE-588)4001166-5 (DE-588)4129143-8 |
title | Fundamental structures of algebra and discrete mathematics |
title_auth | Fundamental structures of algebra and discrete mathematics |
title_exact_search | Fundamental structures of algebra and discrete mathematics |
title_full | Fundamental structures of algebra and discrete mathematics Stephan Foldes |
title_fullStr | Fundamental structures of algebra and discrete mathematics Stephan Foldes |
title_full_unstemmed | Fundamental structures of algebra and discrete mathematics Stephan Foldes |
title_short | Fundamental structures of algebra and discrete mathematics |
title_sort | fundamental structures of algebra and discrete mathematics |
topic | Algebra gtt Algèbre Algèbre ram Informatique - Mathématiques ram Numerieke wiskunde gtt algèbre universelle inriac algèbre inriac anneau inriac catégorie inriac champ inriac ensemble ordonné inriac ensemble inriac espace topologique inriac espace vectoriel inriac graphe inriac groupe inriac mathématiques discrètes inriac matroïde inriac treillis inriac Algebra Algebraische Struktur (DE-588)4001166-5 gnd Diskrete Mathematik (DE-588)4129143-8 gnd |
topic_facet | Algebra Algèbre Informatique - Mathématiques Numerieke wiskunde algèbre universelle algèbre anneau catégorie champ ensemble ordonné ensemble espace topologique espace vectoriel graphe groupe mathématiques discrètes matroïde treillis Algebraische Struktur Diskrete Mathematik |
work_keys_str_mv | AT foldesstephan fundamentalstructuresofalgebraanddiscretemathematics |