Inexact Gauss Newton methods for parameter dependent nonlinear problems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Aachen
Shaker
1994
|
Schriftenreihe: | Berichte aus der Mathematik
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 4, 119 S. Ill., graph. Darst. |
ISBN: | 3826500482 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV009686527 | ||
003 | DE-604 | ||
005 | 19941011 | ||
007 | t | ||
008 | 940627s1994 gw ad|| m||| 00||| eng d | ||
016 | 7 | |a 941441725 |2 DE-101 | |
020 | |a 3826500482 |9 3-8265-0048-2 | ||
035 | |a (OCoLC)31925446 | ||
035 | |a (DE-599)BVBBV009686527 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-11 |a DE-188 | ||
050 | 0 | |a QA297.8 | |
082 | 0 | |a 519.4 |b H686i |2 20 | |
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
100 | 1 | |a Hohmann, Andreas |d 1953- |e Verfasser |0 (DE-588)110521102 |4 aut | |
245 | 1 | 0 | |a Inexact Gauss Newton methods for parameter dependent nonlinear problems |c Andreas Hohmann |
264 | 1 | |a Aachen |b Shaker |c 1994 | |
300 | |a 4, 119 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Berichte aus der Mathematik | |
502 | |a Zugl.: Berlin, Freie Univ., Diss., 1994 | ||
650 | 4 | |a Gaussian quadrature formulas | |
650 | 4 | |a Newton-Raphson method | |
650 | 4 | |a Nonlinear theories | |
650 | 0 | 7 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Newton-Verfahren |0 (DE-588)4171693-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineares Randwertproblem |0 (DE-588)4129830-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |D s |
689 | 0 | 1 | |a Nichtlineares Randwertproblem |0 (DE-588)4129830-5 |D s |
689 | 0 | 2 | |a Newton-Verfahren |0 (DE-588)4171693-0 |D s |
689 | 0 | |5 DE-188 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006406025&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-006406025 |
Datensatz im Suchindex
_version_ | 1807321120834060288 |
---|---|
adam_text |
C
ONTENTS
I
NTRODUCTION
1
I.
N
EWTON
'
S
M
ETHOD
7
1
I
NVARIANCE
P
ROPERTIES
8
2
E
XACT
N
EWTON
M
ETHODS
10
2.1
AFFINE
INVARIANT
APPROACH
.
10
2.2
AFFINE
CONTRAVARIANT
APPROACH
.
13
2.3
EXAMPLE:
STEPSIZE
BOUNDS
FOR
IMPLICIT
DISCRETIZATION
METHODS
17
3
I
NEXACT
N
EWTON
M
ETHODS
21
3.1
AFFINE
INVARIANT
APPROACH
.
23
3.2
AFFINE
CONTRAVARIANT
APPROACH
.
27
3.3
EXAMPLE:
ACCURACY
MATCHING
FOR
MULTIPLE
SHOOTING
.
31
4
S
TEPSIZE
C
ONTROL
FOR
C
ONTINUATION
M
ETHODS
35
II.
A
DAPTIVE
M
ULTILEVEL
N
EWTON
H
-
P
C
OLLOCATION
40
5
G
LOBAL
I
NTEGRAL
F
ORMULATIONS
FOR
BVP
S
43
5.1
VOLTERRA
FORMULATION
.
44
5.2
FREDHOLM
FORMULATION
.
47
5.3
PARAMETER
DEPENDENT
PROBLEMS
.
52
6
C
OLLOCATION
:
V
OLTERRA
A
PPROACH
,
55
6.1
RUNGE
KUTTA
SCHEMES
OF
COLLOCATION
TYPE
.
56
6.2
LOCAL
COLLOCATION
.
60
6.3
GLOBAL
COLLOCATION
.
61
7
C
OLLOCATION
:
F
REDHOLM
A
PPROACH
64
7.1
COLLOCATION
SCHEMES
.
66
7.2
LOCAL
COLLOCATION
.
68
7.3
GLOBAL
COLLOCATION
.
70
4
CONTENTS
8
A
DAPTIVITY
I
SSUES
74
8.1
RESIDUAL
ESTIMATION
.
74
8.2
H-P
STRATEGY
.
79
8.3
MULTILEVEL
NEWTON
METHOD
.
83
III.
I
MPLEMENTATION
AND
N
UMERICAL
E
XAMPLES
87
9
O
BJECT
O
RIENTED
I
MPLEMENTATION
87
10
I
LLUSTRATIVE
E
XAMPLES
93
11
L
IMIT
C
YCLES
OF
A
R
AILWAY
B
OGIE
98
C
ONCLUSIONS
109
S
YMBOLS
111
R
EFERENCES
113 |
any_adam_object | 1 |
author | Hohmann, Andreas 1953- |
author_GND | (DE-588)110521102 |
author_facet | Hohmann, Andreas 1953- |
author_role | aut |
author_sort | Hohmann, Andreas 1953- |
author_variant | a h ah |
building | Verbundindex |
bvnumber | BV009686527 |
callnumber-first | Q - Science |
callnumber-label | QA297 |
callnumber-raw | QA297.8 |
callnumber-search | QA297.8 |
callnumber-sort | QA 3297.8 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 920 |
ctrlnum | (OCoLC)31925446 (DE-599)BVBBV009686527 |
dewey-full | 519.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.4 |
dewey-search | 519.4 |
dewey-sort | 3519.4 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV009686527</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19941011</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940627s1994 gw ad|| m||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">941441725</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3826500482</subfield><subfield code="9">3-8265-0048-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)31925446</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009686527</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA297.8</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.4</subfield><subfield code="b">H686i</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hohmann, Andreas</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)110521102</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inexact Gauss Newton methods for parameter dependent nonlinear problems</subfield><subfield code="c">Andreas Hohmann</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Aachen</subfield><subfield code="b">Shaker</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">4, 119 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Berichte aus der Mathematik</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="a">Zugl.: Berlin, Freie Univ., Diss., 1994</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gaussian quadrature formulas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Newton-Raphson method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear theories</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Newton-Verfahren</subfield><subfield code="0">(DE-588)4171693-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares Randwertproblem</subfield><subfield code="0">(DE-588)4129830-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineares Randwertproblem</subfield><subfield code="0">(DE-588)4129830-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Newton-Verfahren</subfield><subfield code="0">(DE-588)4171693-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006406025&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006406025</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV009686527 |
illustrated | Illustrated |
indexdate | 2024-08-14T00:35:33Z |
institution | BVB |
isbn | 3826500482 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006406025 |
oclc_num | 31925446 |
open_access_boolean | |
owner | DE-11 DE-188 |
owner_facet | DE-11 DE-188 |
physical | 4, 119 S. Ill., graph. Darst. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Shaker |
record_format | marc |
series2 | Berichte aus der Mathematik |
spelling | Hohmann, Andreas 1953- Verfasser (DE-588)110521102 aut Inexact Gauss Newton methods for parameter dependent nonlinear problems Andreas Hohmann Aachen Shaker 1994 4, 119 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Berichte aus der Mathematik Zugl.: Berlin, Freie Univ., Diss., 1994 Gaussian quadrature formulas Newton-Raphson method Nonlinear theories Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd rswk-swf Newton-Verfahren (DE-588)4171693-0 gnd rswk-swf Nichtlineares Randwertproblem (DE-588)4129830-5 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Gewöhnliche Differentialgleichung (DE-588)4020929-5 s Nichtlineares Randwertproblem (DE-588)4129830-5 s Newton-Verfahren (DE-588)4171693-0 s DE-188 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006406025&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hohmann, Andreas 1953- Inexact Gauss Newton methods for parameter dependent nonlinear problems Gaussian quadrature formulas Newton-Raphson method Nonlinear theories Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd Newton-Verfahren (DE-588)4171693-0 gnd Nichtlineares Randwertproblem (DE-588)4129830-5 gnd |
subject_GND | (DE-588)4020929-5 (DE-588)4171693-0 (DE-588)4129830-5 (DE-588)4113937-9 |
title | Inexact Gauss Newton methods for parameter dependent nonlinear problems |
title_auth | Inexact Gauss Newton methods for parameter dependent nonlinear problems |
title_exact_search | Inexact Gauss Newton methods for parameter dependent nonlinear problems |
title_full | Inexact Gauss Newton methods for parameter dependent nonlinear problems Andreas Hohmann |
title_fullStr | Inexact Gauss Newton methods for parameter dependent nonlinear problems Andreas Hohmann |
title_full_unstemmed | Inexact Gauss Newton methods for parameter dependent nonlinear problems Andreas Hohmann |
title_short | Inexact Gauss Newton methods for parameter dependent nonlinear problems |
title_sort | inexact gauss newton methods for parameter dependent nonlinear problems |
topic | Gaussian quadrature formulas Newton-Raphson method Nonlinear theories Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd Newton-Verfahren (DE-588)4171693-0 gnd Nichtlineares Randwertproblem (DE-588)4129830-5 gnd |
topic_facet | Gaussian quadrature formulas Newton-Raphson method Nonlinear theories Gewöhnliche Differentialgleichung Newton-Verfahren Nichtlineares Randwertproblem Hochschulschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006406025&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT hohmannandreas inexactgaussnewtonmethodsforparameterdependentnonlinearproblems |