Isabelle: a generic theorem prover
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1994
|
Schriftenreihe: | Lecture notes in computer science
828 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVII, 321 S. |
ISBN: | 3540582444 0387582444 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009676056 | ||
003 | DE-604 | ||
005 | 20080606 | ||
007 | t | ||
008 | 940620s1994 gw |||| 00||| eng d | ||
016 | 7 | |a 941358577 |2 DE-101 | |
020 | |a 3540582444 |9 3-540-58244-4 | ||
020 | |a 0387582444 |9 0-387-58244-4 | ||
035 | |a (OCoLC)246321016 | ||
035 | |a (DE-599)BVBBV009676056 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-384 |a DE-739 |a DE-91G |a DE-19 |a DE-83 |a DE-11 |a DE-188 |a DE-706 | ||
050 | 0 | |a QA76.9.A96P38 1994 | |
082 | 0 | |a 511.3/0285/53 20 | |
082 | 0 | |a 511.3/0285/53 |2 20 | |
084 | |a SS 4800 |0 (DE-625)143528: |2 rvk | ||
084 | |a ST 240 |0 (DE-625)143625: |2 rvk | ||
084 | |a DAT 706f |2 stub | ||
100 | 1 | |a Paulson, Lawrence C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Isabelle |b a generic theorem prover |c Lawrence C. Paulson. With contributions by Tobias Nipkow |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1994 | |
300 | |a XVII, 321 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in computer science |v 828 | |
630 | 0 | 4 | |a Isabelle (Computer file) |
650 | 7 | |a Automatische bewijsvoering |2 gtt | |
650 | 4 | |a Théorèmes - Démonstration automatique | |
650 | 7 | |a Théorèmes - Démonstration automatique |2 ram | |
650 | 7 | |a déduction |2 inriac | |
650 | 7 | |a langage formel |2 inriac | |
650 | 7 | |a logique mathématique |2 inriac | |
650 | 7 | |a logique |2 inriac | |
650 | 7 | |a métalogique |2 inriac | |
650 | 7 | |a théorie démonstration |2 inriac | |
650 | 7 | |a vérification logiciel |2 inriac | |
650 | 4 | |a Automatic theorem proving | |
650 | 0 | 7 | |a Isabelle |g Programm |0 (DE-588)4353452-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Isabelle |g Programm |0 (DE-588)4353452-1 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Lecture notes in computer science |v 828 |w (DE-604)BV000000607 |9 828 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006399684&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-006399684 |
Datensatz im Suchindex
_version_ | 1807594550548496384 |
---|---|
adam_text |
TABLE
OF
CONTENTS
I
INTRODUCTION
TO
ISABELLE
1
1
FOUNDATIONS
.
3
1.1
FORMALIZING
LOGICAL
SYNTAX
IN
ISABELLE
.
3
1.2
FORMALIZING
LOGICAL
RULES
IN
ISABELLE
.
7
1.3
PROOF
CONSTRUCTION
IN
ISABELLE
.
11
1.4
LIFTING
A
RULE
INTO
A
CONTEXT
.
15
1.5
BACKWARD
PROOF
BY
RESOLUTION
.
17
1.6
VARIATIONS
ON
RESOLUTION
.
21
2
GETTING
STARTED
WITH
ISABELLE
.
25
2.1
FORWARD
PROOF
.
25
2.2
BACKWARD
PROOF
.
30
2.3
QUANTIFIER
REASONING
.
34
3
ADVANCED
METHODS
.
41
3.1
DERIVING
RULES
IN
ISABELLE
.
41
3.2
DEFINING
THEORIES
.
46
3.3
THEORY
EXAMPLE:
THE
NATURAL
NUMBERS
.
52
3.4
REFINEMENT
WITH
EXPLICIT
INSTANTIATION
.
55
3.5
A
PROLOG
INTERPRETER
.
58
II
THE
ISABELLE
REFERENCE
MANUAL
63
4
BASIC
USE
OF
ISABELLE
.
65
4.1
BASIC
INTERACTION
WITH
ISABELLE
.
65
4.2
ENDING
A
SESSION
.
66
4.3
READING
ML
FILES
.
66
4.4
PRINTING
OF
TERMS
AND
THEOREMS
.
66
4.5
DISPLAYING
EXCEPTIONS
AS
ERROR
MESSAGES
.
68
4.6
SHELL
SCRIPTS
.
68
XII
TABLE
OF
CONTENTS
5
PROOF
MANAGEMENT:
THE
SUBGOAL
MODULE
.
71
5.1
BASIC
COMMANDS
.
71
5.2
SHORTCUTS
FOR
APPLYING
TACTICS
.
74
5.3
EXECUTING
BATCH
PROOFS
.
76
5.4
MANAGING
MULTIPLE
PROOFS
.
77
5.5
DEBUGGING
AND
INSPECTING
.
78
6
TACTICS
.
81
6.1
RESOLUTION
AND
ASSUMPTION
TACTICS
.
81
6.2
OTHER
BASIC
TACTICS
.
83
6.3
OBSCURE
TACTICS
.
85
6.4
MANAGING
LOTS
OF
RULES
.
87
6.5
PROGRAMMING
TOOLS
FOR
PROOF
STRATEGIES
.
89
6.6
SEQUENCES
.
90
7
TACTICALS
.
93
7.1
THE
BASIC
TACTICALS
.
93
7.2
CONTROL
AND
SEARCH
TACTICALS
.
95
7.3
TACTICALS
FOR
SUBGOAL
NUMBERING
.
98
8
THEOREMS
AND
FORWARD
PROOF
.
101
8.1
BASIC
OPERATIONS
ON
THEOREMS
.
101
8.2
PRIMITIVE
META-LEVEL
INFERENCE
RULES
.
105
8.3
DERIVED
RULES
FOR
GOAL-DIRECTED
PROOF
.
109
9
THEORIES,
TERMS
AND
TYPES
.
113
9.1
DEFINING
THEORIES
.
113
9.2
LOADING
A
NEW
THEORY
.
115
9.3
RELOADING
MODIFIED
THEORIES
.
116
9.4
BASIC
OPERATIONS
ON
THEORIES
.
118
9.5
TERMS
.
119
9.6
VARIABLE
BINDING
.
120
9.7
CERTIFIED
TERMS
.
121
9.8
TYPES
.
122
9.9
CERTIFIED
TYPES
.
122
10
DEFINING
LOGICS
.
125
10.1
PRIORITY
GRAMMARS
.
125
10.2
THE
PURE
SYNTAX
.
126
10.3
MIXFIX
DECLARATIONS
.
131
10.4
EXAMPLE:
SOME
MINIMAL
LOGICS
.
136
11
SYNTAX
TRANSFORMATIONS
.
139
11.1
ABSTRACT
SYNTAX
TREES
.
139
11.2
TRANSFORMING
PARSE
TREES
TO
ASTS
.
140
11.3
TRANSFORMING
ASTS
TO
TERMS
.
142
TABLE
OF
CONTENTS
XIII
11.4
PRINTING
OF
TERMS
.
142
11.5
MACROS:
SYNTACTIC
REWRITING
.
144
11.6
TRANSLATION
FUNCTIONS
.
150
12
SUBSTITUTION
TACTICS
.
153
12.1
SUBSTITUTION
RULES
.
153
12.2
SUBSTITUTION
IN
THE
HYPOTHESES
.
154
12.3
SETTING
UP
HYP_SUBST_TAC
.
155
13
SIMPLIFICATION
.
157
13.1
SIMPLIFICATION
SETS
.
157
13.2
THE
SIMPLIFICATION
TACTICS
.
160
13.3
EXAMPLES
USING
THE
SIMPLIFIER
.
161
13.4
PERMUTATIVE
REWRITE
RULES
.
164
13.5
*SETTING
UP
THE
SIMPLIFIER
.
166
14
THE
CLASSICAL
REASONER
.
171
14.1
THE
SEQUENT
CALCULUS
.
171
14.2
SIMULATING
SEQUENTS
BY
NATURAL
DEDUCTION
.
172
14.3
EXTRA
RULES
FOR
THE
SEQUENT
CALCULUS
.
173
14.4
CLASSICAL
RULE
SETS
.
174
14.5
THE
CLASSICAL
TACTICS
.
176
14.6
SETTING
UP
THE
CLASSICAL
REASONER
.
178
III
ISABELLE
'
S
OBJECT-LOGICS
179
15
BASIC
CONCEPTS
.
181
15.1
SYNTAX
DEFINITIONS
.
182
15.2
PROOF
PROCEDURES
.
183
16
FIRST-ORDER
LOGIC
.
185
16.1
SYNTAX
AND
RULES
OF
INFERENCE
.
185
16.2
GENERIC
PACKAGES
.
186
16.3
INTUITIONISTIC
PROOF
PROCEDURES
.
186
16.4
CLASSICAL
PROOF
PROCEDURES
.
191
16.5
AN
INTUITIONISTIC
EXAMPLE
.
192
16.6
AN
EXAMPLE
OF
INTUITIONISTIC
NEGATION
.
193
16.7
A
CLASSICAL
EXAMPLE
.
195
16.8
DERIVED
RULES
AND
THE
CLASSICAL
TACTICS
.
196
17
ZERMELO-FRAENKEL
SET
THEORY
.
203
17.1
WHICH
VERSION
OF AXIOMATIC
SET
THEORY?
.
203
17.2
THE
SYNTAX
OF
SET
THEORY
.
204
17.3
BINDING
OPERATORS
.
206
17.4
THE
ZERMELO-FRAENKEL
AXIOMS
.
208
XIV
TABLE
OF
CONTENTS
17.5
FROM
BASIC
LEMMAS
TO
FUNCTION
SPACES
.
211
17.6
FURTHER
DEVELOPMENTS
.
219
17.7
SIMPLIFICATION
RULES
.
228
17.8
THE
EXAMPLES
DIRECTORY
.
229
17.9
A
PROOF
ABOUT
POWERSETS
.
230
17.10
MONOTONICITY
OF
THE
UNION
OPERATOR
.
232
17.11
LOW-LEVEL
REASONING
ABOUT
FUNCTIONS
.
233
18
HIGHER-ORDER
LOGIC
.
235
18.1
SYNTAX
.
235
18.2
RULES
OF
INFERENCE
.
240
18.3
A
FORMULATION
OF
SET
THEORY
.
245
18.4
GENERIC
PACKAGES
AND
CLASSICAL
REASONING
.
251
18.5
TYPES
.
253
18.6
THE
EXAMPLES
DIRECTORIES
.
259
18.7
EXAMPLE:
CANTOR
'
S
THEOREM
.
260
19
FIRST-ORDER
SEQUENT
CALCULUS
.
263
19.1
UNIFICATION
FOR
LISTS
.
263
19.2
SYNTAX
AND
RULES
OF
INFERENCE
.
265
19.3
TACTICS
FOR
THE
CUT
RULE
.
267
19.4
TACTICS
FOR
SEQUENTS
.
268
19.5
PACKAGING
SEQUENT
RULES
.
269
19.6
PROOF
PROCEDURES
.
270
19.7
A
SIMPLE
EXAMPLE
OF
CLASSICAL
REASONING
.
271
19.8
A
MORE
COMPLEX
PROOF
.
272
20
CONSTRUCTIVE
TYPE
THEORY
.
275
20.1
SYNTAX
.
277
20.2
RULES
OF
INFERENCE
.
277
20.3
RULE
LISTS
.
281
20.4
TACTICS
FOR
SUBGOAL
REORDERING
.
284
20.5
REWRITING
TACTICS
.
284
20.6
TACTICS
FOR
LOGICAL
REASONING
.
285
20.7
A
THEORY
OF
ARITHMETIC
.
286
20.8
THE
EXAMPLES
DIRECTORY
.
286
20.9
EXAMPLE:
TYPE
INFERENCE
.
288
20.10
AN
EXAMPLE
OF
LOGICAL
REASONING
.
289
20.11
EXAMPLE:
DERIVING
A
CURRYING
FUNCTIONAL
.
292
20.12
EXAMPLE:
PROVING
THE
AXIOM
OF
CHOICE
.
293
A
SYNTAX
OF
ISABELLE
THEORIES
.
297
REFERENCES
.
301
INDEX
.
305 |
any_adam_object | 1 |
author | Paulson, Lawrence C. |
author_facet | Paulson, Lawrence C. |
author_role | aut |
author_sort | Paulson, Lawrence C. |
author_variant | l c p lc lcp |
building | Verbundindex |
bvnumber | BV009676056 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.A96P38 1994 |
callnumber-search | QA76.9.A96P38 1994 |
callnumber-sort | QA 276.9 A96 P38 41994 |
callnumber-subject | QA - Mathematics |
classification_rvk | SS 4800 ST 240 |
classification_tum | DAT 706f |
ctrlnum | (OCoLC)246321016 (DE-599)BVBBV009676056 |
dewey-full | 511.3/0285/5320 511.3/0285/53 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/0285/53 20 511.3/0285/53 |
dewey-search | 511.3/0285/53 20 511.3/0285/53 |
dewey-sort | 3511.3 3285 253 220 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV009676056</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080606</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940620s1994 gw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">941358577</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540582444</subfield><subfield code="9">3-540-58244-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387582444</subfield><subfield code="9">0-387-58244-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246321016</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009676056</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.9.A96P38 1994</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/0285/53 20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/0285/53</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SS 4800</subfield><subfield code="0">(DE-625)143528:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 240</subfield><subfield code="0">(DE-625)143625:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 706f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Paulson, Lawrence C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Isabelle</subfield><subfield code="b">a generic theorem prover</subfield><subfield code="c">Lawrence C. Paulson. With contributions by Tobias Nipkow</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 321 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in computer science</subfield><subfield code="v">828</subfield></datafield><datafield tag="630" ind1="0" ind2="4"><subfield code="a">Isabelle (Computer file)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Automatische bewijsvoering</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théorèmes - Démonstration automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Théorèmes - Démonstration automatique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">déduction</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">langage formel</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">logique mathématique</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">logique</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">métalogique</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">théorie démonstration</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">vérification logiciel</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic theorem proving</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Isabelle</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4353452-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Isabelle</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4353452-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in computer science</subfield><subfield code="v">828</subfield><subfield code="w">(DE-604)BV000000607</subfield><subfield code="9">828</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006399684&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006399684</subfield></datafield></record></collection> |
id | DE-604.BV009676056 |
illustrated | Not Illustrated |
indexdate | 2024-08-17T01:01:37Z |
institution | BVB |
isbn | 3540582444 0387582444 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006399684 |
oclc_num | 246321016 |
open_access_boolean | |
owner | DE-384 DE-739 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-83 DE-11 DE-188 DE-706 |
owner_facet | DE-384 DE-739 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-83 DE-11 DE-188 DE-706 |
physical | XVII, 321 S. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer |
record_format | marc |
series | Lecture notes in computer science |
series2 | Lecture notes in computer science |
spelling | Paulson, Lawrence C. Verfasser aut Isabelle a generic theorem prover Lawrence C. Paulson. With contributions by Tobias Nipkow Berlin [u.a.] Springer 1994 XVII, 321 S. txt rdacontent n rdamedia nc rdacarrier Lecture notes in computer science 828 Isabelle (Computer file) Automatische bewijsvoering gtt Théorèmes - Démonstration automatique Théorèmes - Démonstration automatique ram déduction inriac langage formel inriac logique mathématique inriac logique inriac métalogique inriac théorie démonstration inriac vérification logiciel inriac Automatic theorem proving Isabelle Programm (DE-588)4353452-1 gnd rswk-swf Isabelle Programm (DE-588)4353452-1 s DE-604 Lecture notes in computer science 828 (DE-604)BV000000607 828 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006399684&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Paulson, Lawrence C. Isabelle a generic theorem prover Lecture notes in computer science Isabelle (Computer file) Automatische bewijsvoering gtt Théorèmes - Démonstration automatique Théorèmes - Démonstration automatique ram déduction inriac langage formel inriac logique mathématique inriac logique inriac métalogique inriac théorie démonstration inriac vérification logiciel inriac Automatic theorem proving Isabelle Programm (DE-588)4353452-1 gnd |
subject_GND | (DE-588)4353452-1 |
title | Isabelle a generic theorem prover |
title_auth | Isabelle a generic theorem prover |
title_exact_search | Isabelle a generic theorem prover |
title_full | Isabelle a generic theorem prover Lawrence C. Paulson. With contributions by Tobias Nipkow |
title_fullStr | Isabelle a generic theorem prover Lawrence C. Paulson. With contributions by Tobias Nipkow |
title_full_unstemmed | Isabelle a generic theorem prover Lawrence C. Paulson. With contributions by Tobias Nipkow |
title_short | Isabelle |
title_sort | isabelle a generic theorem prover |
title_sub | a generic theorem prover |
topic | Isabelle (Computer file) Automatische bewijsvoering gtt Théorèmes - Démonstration automatique Théorèmes - Démonstration automatique ram déduction inriac langage formel inriac logique mathématique inriac logique inriac métalogique inriac théorie démonstration inriac vérification logiciel inriac Automatic theorem proving Isabelle Programm (DE-588)4353452-1 gnd |
topic_facet | Isabelle (Computer file) Automatische bewijsvoering Théorèmes - Démonstration automatique déduction langage formel logique mathématique logique métalogique théorie démonstration vérification logiciel Automatic theorem proving Isabelle Programm |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006399684&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000607 |
work_keys_str_mv | AT paulsonlawrencec isabelleagenerictheoremprover |