Symplectic geometry: an introduction based on the seminar in Bern, 1992
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Basel u.a.
Birkhäuser
1994
|
Schriftenreihe: | Progress in mathematics
124 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 239 S. graph. Darst. |
ISBN: | 3764350644 0817650644 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009620298 | ||
003 | DE-604 | ||
005 | 19950330 | ||
007 | t | ||
008 | 940524s1994 gw d||| |||| 10||| eng d | ||
016 | 7 | |a 941096874 |2 DE-101 | |
020 | |a 3764350644 |9 3-7643-5064-4 | ||
020 | |a 0817650644 |9 0-8176-5064-4 | ||
035 | |a (OCoLC)246678261 | ||
035 | |a (DE-599)BVBBV009620298 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-29T |a DE-384 |a DE-91G |a DE-12 |a DE-824 |a DE-703 |a DE-19 |a DE-634 |a DE-83 |a DE-11 |a DE-188 | ||
082 | 0 | |a 516.36 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a MAT 537f |2 stub | ||
084 | |a 58F05 |2 msc | ||
245 | 1 | 0 | |a Symplectic geometry |b an introduction based on the seminar in Bern, 1992 |c B. Aebischer ... |
264 | 1 | |a Basel u.a. |b Birkhäuser |c 1994 | |
300 | |a XII, 239 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in mathematics |v 124 | |
650 | 0 | 7 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 1992 |z Bern |2 gnd-content | |
689 | 0 | 0 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Aebischer, Beat |e Sonstige |4 oth | |
830 | 0 | |a Progress in mathematics |v 124 |w (DE-604)BV000004120 |9 124 | |
856 | 4 | 2 | |m Digitalisierung TU Muenchen |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006358282&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-006358282 |
Datensatz im Suchindex
_version_ | 1804123960592302080 |
---|---|
adam_text | Contents
Preface
....................................
¡x
1
Introduction
1.1
Symplectic
Linear Algebra
..................... 1
1.2
Symplectic
Manifolds
........................ 2
1.3
Hamiltonian Systems
........................ 4
1.4
The Maslov Index
......................... 7
2
Darboux
Theorem and Examples of
Symplectic
Manifolds
2.1
The Theorem of
Darboux
..................... 17
2.2
The Cotangent Bundle
....................... 22
2.3 Kahler
Manifolds
.......................... 23
2.4
Coadjoint Orbits
.......................... 32
2.5
An Example: CPn as a Symplectic Manifold
.......... 40
3
Generating Functions
3.1
Minimax
Principie
and
Lustemik-Schnirełman
Theory
..... 43
3.2 Lagrange submanifolds....................... 48
3.3
Generating functions
........................ 49
3.4
The action functional considered as a generating function
... 52
3.5
Critical points for generating functions
.............. 56
3.6
Stabilization
............................. 59
3.7
Symplectic diffeomorphisms of R2n
................ 60
3.8
The Viterbo capacities
....................... 63
4
Symplectic Capacities
4.1
Existence of Periodic Solutions
.................. 65
4.2
Symplectic Capacities
....................... 73
5
Ploer Homology
5.1
Morse Homology and the Coniey Index
.............. 79
5.2
The Arnoi d Conjecture
...................... 86
5.3
The Variational Setup
....................... 88
5.4
Definition of
Floer
Homology
................... 91
5.5
Continuation of
Floer
Homology
................. 93
5.6
Floer
Homology Equals Singular Homology
........... 95
5.7
Symplectic Homology
....................... 97
Contents
Pseudoholomorphic
Curves
6.1
Introduction
............................. 99
6.1.1 Lineax
algebra
of symplectic and almost
complex structures
..................... 99
6.1.2
Definition of pseudoholomorphic curves
......... 102
6.1.3
Regularity of holomorphic curves
............. 103
6.2
The Moduli Space of Holomorphic Curves
............ 104
6.2.1
The setting of global analysis
............... 104
6.2.2
The operator Bj and its linearization
........... 109
6.2.3
The moduli space at regular almost complex
structures
.......................... 114
6.2.4
Comparison of moduli spaces at different complex
structures
.......................... 119
6.3
Compactness of the Moduli Space
................ 119
6.3.1
A homological criterion for injectivity
.......... 120
6.3.2
An
apriori
inequality
.................... 126
6.3.3
Weak compactness
..................... 135
6.3.4
Removing singularities
................... 138
6.3.5
A compactness and an existence result
.......... 142
6.3.6
An application
....................... 145
7
Gromov s Compactness Theorem from a Geometrical
Point of View
7.1
Gromov-Schwarz Lemma,
Monotonicity,
Removing
Singularities
............................. 147
7.2
Deformation of Surfaces and Convergence of Hyperbolic
Structures
.............................. 150
7.3
Gromov s Compactness Theorem
................. 155
8
Contact structures
8.1
Contact manifolds
......................... 167
8.2
Symplectification
.......................... 173
8.3
Strictly pseudoconvex surfaces
.................. 178
8.4
Contact structures on 3-manifolds
................ 182
8.4.1
Plane fields on 3-manifolds
................ 182
8.4.2
Invariant contact structures on the solid torus
...... 184
8.4.3
Martinet s theorem
..................... 188
Contents
vii
8.5
Two-dimensional surfaces in contact manifolds
......... 190
8.5.1
Germs of contact structures on 2-dimensional
surfaces
........................... 190
8.5.2
Invariants for curves in contact manifolds
........ 195
8.5.3
Index theorems for 2-dimensional surfaces
........ 199
8.5.4
Bennequin s inequality
................... 205
8.6
Holomorphic filling
......................... 206
8.6.1
Bishop s theorem
...................... 206
8.6.2
One-parameter families of holomorphic discs
...... 210
8.6.3
Fillable contact structures
................. 213
8.7
Eliashberg s classification of 3-dimensional contact
structures
..............,................ 217
A Generalities on Homology and Cohomology
A.I Axioms for homology
........................ 220
A.2 Axioms for cohomology
...................... 221
A.3 Homomorphisms of (co)homology sequences
........... 222
A.4 The (cojhomology sequence of a triple
.............. 222
A.
5
Homotopy equivalence and contractibility
............ 224
A.6 Direct sums
............................. 225
A.7 Triads
................................ 225
A.
8
Mayer-Vietoris sequence of a triad
................ 226
References
.................................. 229
Index
..................................... 237
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV009620298 |
classification_rvk | SK 370 |
classification_tum | MAT 537f |
ctrlnum | (OCoLC)246678261 (DE-599)BVBBV009620298 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01652nam a2200421 cb4500</leader><controlfield tag="001">BV009620298</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19950330 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940524s1994 gw d||| |||| 10||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">941096874</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764350644</subfield><subfield code="9">3-7643-5064-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817650644</subfield><subfield code="9">0-8176-5064-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246678261</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009620298</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 537f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58F05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symplectic geometry</subfield><subfield code="b">an introduction based on the seminar in Bern, 1992</subfield><subfield code="c">B. Aebischer ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel u.a.</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 239 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematics</subfield><subfield code="v">124</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1992</subfield><subfield code="z">Bern</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aebischer, Beat</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematics</subfield><subfield code="v">124</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">124</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung TU Muenchen</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006358282&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006358282</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 1992 Bern gnd-content |
genre_facet | Konferenzschrift 1992 Bern |
id | DE-604.BV009620298 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:38:04Z |
institution | BVB |
isbn | 3764350644 0817650644 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006358282 |
oclc_num | 246678261 |
open_access_boolean | |
owner | DE-29T DE-384 DE-91G DE-BY-TUM DE-12 DE-824 DE-703 DE-19 DE-BY-UBM DE-634 DE-83 DE-11 DE-188 |
owner_facet | DE-29T DE-384 DE-91G DE-BY-TUM DE-12 DE-824 DE-703 DE-19 DE-BY-UBM DE-634 DE-83 DE-11 DE-188 |
physical | XII, 239 S. graph. Darst. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in mathematics |
series2 | Progress in mathematics |
spelling | Symplectic geometry an introduction based on the seminar in Bern, 1992 B. Aebischer ... Basel u.a. Birkhäuser 1994 XII, 239 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Progress in mathematics 124 Symplektische Geometrie (DE-588)4194232-2 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 1992 Bern gnd-content Symplektische Geometrie (DE-588)4194232-2 s DE-604 Aebischer, Beat Sonstige oth Progress in mathematics 124 (DE-604)BV000004120 124 Digitalisierung TU Muenchen application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006358282&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Symplectic geometry an introduction based on the seminar in Bern, 1992 Progress in mathematics Symplektische Geometrie (DE-588)4194232-2 gnd |
subject_GND | (DE-588)4194232-2 (DE-588)1071861417 |
title | Symplectic geometry an introduction based on the seminar in Bern, 1992 |
title_auth | Symplectic geometry an introduction based on the seminar in Bern, 1992 |
title_exact_search | Symplectic geometry an introduction based on the seminar in Bern, 1992 |
title_full | Symplectic geometry an introduction based on the seminar in Bern, 1992 B. Aebischer ... |
title_fullStr | Symplectic geometry an introduction based on the seminar in Bern, 1992 B. Aebischer ... |
title_full_unstemmed | Symplectic geometry an introduction based on the seminar in Bern, 1992 B. Aebischer ... |
title_short | Symplectic geometry |
title_sort | symplectic geometry an introduction based on the seminar in bern 1992 |
title_sub | an introduction based on the seminar in Bern, 1992 |
topic | Symplektische Geometrie (DE-588)4194232-2 gnd |
topic_facet | Symplektische Geometrie Konferenzschrift 1992 Bern |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006358282&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT aebischerbeat symplecticgeometryanintroductionbasedontheseminarinbern1992 |