Oscillations in finite quantum systems:
This book surveys the physics of small clusters of particles undergoing vibrations, with applications in nuclear physics and the physics and chemistry of atomic clusters. The book begins with a survey of the experimental information on collective vibrations in atoms, metal clusters and nuclei. Next,...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge u.a.
Cambridge Univ. Press
1994
|
Ausgabe: | 1. publ. |
Schriftenreihe: | Cambridge monographs on mathematical physics
|
Schlagworte: | |
Zusammenfassung: | This book surveys the physics of small clusters of particles undergoing vibrations, with applications in nuclear physics and the physics and chemistry of atomic clusters. The book begins with a survey of the experimental information on collective vibrations in atoms, metal clusters and nuclei. Next, the book goes on to develop theoretical tools to understand these findings. Special emphasis is placed on the Rayleigh-Ritz principle, the use of sum rules, and the quantum mechanics of mean field theory, known as "RPA". The important vibrational modes observed in the different systems are then discussed, including the dipole mode of oscillation (important in both nuclei and metal clusters), surface modes of higher polarity, and the compressional mode. In the last two chapters mechanisms for the damping of vibrational modes and the effects of excitation energy on the modes are described This book will be of interest to experimentalists and theorists studying finite quantum systems in nuclear physics, atomic physics or physical chemistry |
Beschreibung: | XII, 212 S. graph. Darst. |
ISBN: | 0521411483 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV009588811 | ||
003 | DE-604 | ||
005 | 19971020 | ||
007 | t | ||
008 | 940510s1994 d||| |||| 00||| eng d | ||
020 | |a 0521411483 |9 0-521-41148-3 | ||
035 | |a (OCoLC)27012125 | ||
035 | |a (DE-599)BVBBV009588811 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-12 |a DE-384 |a DE-91G |a DE-703 |a DE-29T |a DE-19 | ||
050 | 0 | |a QC174.17.P7 | |
082 | 0 | |a 530.1/44 |2 20 | |
084 | |a UL 3000 |0 (DE-625)145823: |2 rvk | ||
084 | |a PHY 013f |2 stub | ||
084 | |a PHY 026f |2 stub | ||
100 | 1 | |a Bertsch, George F. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Oscillations in finite quantum systems |c G. F. Bertsch ; R. A. Broglia |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge u.a. |b Cambridge Univ. Press |c 1994 | |
300 | |a XII, 212 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on mathematical physics | |
520 | 3 | |a This book surveys the physics of small clusters of particles undergoing vibrations, with applications in nuclear physics and the physics and chemistry of atomic clusters. The book begins with a survey of the experimental information on collective vibrations in atoms, metal clusters and nuclei. Next, the book goes on to develop theoretical tools to understand these findings. Special emphasis is placed on the Rayleigh-Ritz principle, the use of sum rules, and the quantum mechanics of mean field theory, known as "RPA". The important vibrational modes observed in the different systems are then discussed, including the dipole mode of oscillation (important in both nuclei and metal clusters), surface modes of higher polarity, and the compressional mode. In the last two chapters mechanisms for the damping of vibrational modes and the effects of excitation energy on the modes are described | |
520 | |a This book will be of interest to experimentalists and theorists studying finite quantum systems in nuclear physics, atomic physics or physical chemistry | ||
650 | 7 | |a Atomes |2 ram | |
650 | 7 | |a Cristaux métalliques |2 ram | |
650 | 7 | |a Oscillations |2 ram | |
650 | 7 | |a Problème des N corps |2 ram | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Atoms | |
650 | 4 | |a Many-body problem | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Metal crystals | |
650 | 4 | |a Nuclear physics | |
650 | 4 | |a Oscillations | |
650 | 0 | 7 | |a Quantenmechanisches System |0 (DE-588)4300046-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vielkörperproblem |0 (DE-588)4078900-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vielteilchentheorie |0 (DE-588)4331960-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Atom |0 (DE-588)4003412-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schwingung |0 (DE-588)4053999-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schwingungssystem |0 (DE-588)4180568-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Vielteilchentheorie |0 (DE-588)4331960-9 |D s |
689 | 0 | 1 | |a Schwingung |0 (DE-588)4053999-4 |D s |
689 | 0 | 2 | |a Quantenmechanisches System |0 (DE-588)4300046-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Quantenmechanisches System |0 (DE-588)4300046-0 |D s |
689 | 1 | 1 | |a Schwingungssystem |0 (DE-588)4180568-9 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Vielkörperproblem |0 (DE-588)4078900-7 |D s |
689 | 2 | 1 | |a Schwingung |0 (DE-588)4053999-4 |D s |
689 | 2 | 2 | |a Quantenmechanisches System |0 (DE-588)4300046-0 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 3 | 1 | |a Schwingung |0 (DE-588)4053999-4 |D s |
689 | 3 | 2 | |a Atom |0 (DE-588)4003412-4 |D s |
689 | 3 | |8 1\p |5 DE-604 | |
700 | 1 | |a Broglia, R. A. |d 1939- |e Verfasser |0 (DE-588)171991168 |4 aut | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006337563 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804123930087129088 |
---|---|
any_adam_object | |
author | Bertsch, George F. Broglia, R. A. 1939- |
author_GND | (DE-588)171991168 |
author_facet | Bertsch, George F. Broglia, R. A. 1939- |
author_role | aut aut |
author_sort | Bertsch, George F. |
author_variant | g f b gf gfb r a b ra rab |
building | Verbundindex |
bvnumber | BV009588811 |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.17.P7 |
callnumber-search | QC174.17.P7 |
callnumber-sort | QC 3174.17 P7 |
callnumber-subject | QC - Physics |
classification_rvk | UL 3000 |
classification_tum | PHY 013f PHY 026f |
ctrlnum | (OCoLC)27012125 (DE-599)BVBBV009588811 |
dewey-full | 530.1/44 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1/44 |
dewey-search | 530.1/44 |
dewey-sort | 3530.1 244 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03830nam a2200781 c 4500</leader><controlfield tag="001">BV009588811</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19971020 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940510s1994 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521411483</subfield><subfield code="9">0-521-41148-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)27012125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009588811</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC174.17.P7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1/44</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UL 3000</subfield><subfield code="0">(DE-625)145823:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 013f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 026f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bertsch, George F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Oscillations in finite quantum systems</subfield><subfield code="c">G. F. Bertsch ; R. A. Broglia</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge u.a.</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 212 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on mathematical physics</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book surveys the physics of small clusters of particles undergoing vibrations, with applications in nuclear physics and the physics and chemistry of atomic clusters. The book begins with a survey of the experimental information on collective vibrations in atoms, metal clusters and nuclei. Next, the book goes on to develop theoretical tools to understand these findings. Special emphasis is placed on the Rayleigh-Ritz principle, the use of sum rules, and the quantum mechanics of mean field theory, known as "RPA". The important vibrational modes observed in the different systems are then discussed, including the dipole mode of oscillation (important in both nuclei and metal clusters), surface modes of higher polarity, and the compressional mode. In the last two chapters mechanisms for the damping of vibrational modes and the effects of excitation energy on the modes are described</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book will be of interest to experimentalists and theorists studying finite quantum systems in nuclear physics, atomic physics or physical chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Atomes</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cristaux métalliques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Oscillations</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Problème des N corps</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atoms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Many-body problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal crystals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oscillations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanisches System</subfield><subfield code="0">(DE-588)4300046-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vielkörperproblem</subfield><subfield code="0">(DE-588)4078900-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vielteilchentheorie</subfield><subfield code="0">(DE-588)4331960-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Atom</subfield><subfield code="0">(DE-588)4003412-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwingung</subfield><subfield code="0">(DE-588)4053999-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwingungssystem</subfield><subfield code="0">(DE-588)4180568-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Vielteilchentheorie</subfield><subfield code="0">(DE-588)4331960-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Schwingung</subfield><subfield code="0">(DE-588)4053999-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Quantenmechanisches System</subfield><subfield code="0">(DE-588)4300046-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quantenmechanisches System</subfield><subfield code="0">(DE-588)4300046-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Schwingungssystem</subfield><subfield code="0">(DE-588)4180568-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Vielkörperproblem</subfield><subfield code="0">(DE-588)4078900-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Schwingung</subfield><subfield code="0">(DE-588)4053999-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Quantenmechanisches System</subfield><subfield code="0">(DE-588)4300046-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Schwingung</subfield><subfield code="0">(DE-588)4053999-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="2"><subfield code="a">Atom</subfield><subfield code="0">(DE-588)4003412-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Broglia, R. A.</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)171991168</subfield><subfield code="4">aut</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006337563</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV009588811 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:37:35Z |
institution | BVB |
isbn | 0521411483 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006337563 |
oclc_num | 27012125 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-12 DE-384 DE-91G DE-BY-TUM DE-703 DE-29T DE-19 DE-BY-UBM |
owner_facet | DE-355 DE-BY-UBR DE-12 DE-384 DE-91G DE-BY-TUM DE-703 DE-29T DE-19 DE-BY-UBM |
physical | XII, 212 S. graph. Darst. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Cambridge Univ. Press |
record_format | marc |
series2 | Cambridge monographs on mathematical physics |
spelling | Bertsch, George F. Verfasser aut Oscillations in finite quantum systems G. F. Bertsch ; R. A. Broglia 1. publ. Cambridge u.a. Cambridge Univ. Press 1994 XII, 212 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Cambridge monographs on mathematical physics This book surveys the physics of small clusters of particles undergoing vibrations, with applications in nuclear physics and the physics and chemistry of atomic clusters. The book begins with a survey of the experimental information on collective vibrations in atoms, metal clusters and nuclei. Next, the book goes on to develop theoretical tools to understand these findings. Special emphasis is placed on the Rayleigh-Ritz principle, the use of sum rules, and the quantum mechanics of mean field theory, known as "RPA". The important vibrational modes observed in the different systems are then discussed, including the dipole mode of oscillation (important in both nuclei and metal clusters), surface modes of higher polarity, and the compressional mode. In the last two chapters mechanisms for the damping of vibrational modes and the effects of excitation energy on the modes are described This book will be of interest to experimentalists and theorists studying finite quantum systems in nuclear physics, atomic physics or physical chemistry Atomes ram Cristaux métalliques ram Oscillations ram Problème des N corps ram Mathematische Physik Atoms Many-body problem Mathematical physics Metal crystals Nuclear physics Oscillations Quantenmechanisches System (DE-588)4300046-0 gnd rswk-swf Vielkörperproblem (DE-588)4078900-7 gnd rswk-swf Vielteilchentheorie (DE-588)4331960-9 gnd rswk-swf Atom (DE-588)4003412-4 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Schwingung (DE-588)4053999-4 gnd rswk-swf Schwingungssystem (DE-588)4180568-9 gnd rswk-swf Vielteilchentheorie (DE-588)4331960-9 s Schwingung (DE-588)4053999-4 s Quantenmechanisches System (DE-588)4300046-0 s DE-604 Schwingungssystem (DE-588)4180568-9 s Vielkörperproblem (DE-588)4078900-7 s Mathematische Physik (DE-588)4037952-8 s Atom (DE-588)4003412-4 s 1\p DE-604 Broglia, R. A. 1939- Verfasser (DE-588)171991168 aut 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bertsch, George F. Broglia, R. A. 1939- Oscillations in finite quantum systems Atomes ram Cristaux métalliques ram Oscillations ram Problème des N corps ram Mathematische Physik Atoms Many-body problem Mathematical physics Metal crystals Nuclear physics Oscillations Quantenmechanisches System (DE-588)4300046-0 gnd Vielkörperproblem (DE-588)4078900-7 gnd Vielteilchentheorie (DE-588)4331960-9 gnd Atom (DE-588)4003412-4 gnd Mathematische Physik (DE-588)4037952-8 gnd Schwingung (DE-588)4053999-4 gnd Schwingungssystem (DE-588)4180568-9 gnd |
subject_GND | (DE-588)4300046-0 (DE-588)4078900-7 (DE-588)4331960-9 (DE-588)4003412-4 (DE-588)4037952-8 (DE-588)4053999-4 (DE-588)4180568-9 |
title | Oscillations in finite quantum systems |
title_auth | Oscillations in finite quantum systems |
title_exact_search | Oscillations in finite quantum systems |
title_full | Oscillations in finite quantum systems G. F. Bertsch ; R. A. Broglia |
title_fullStr | Oscillations in finite quantum systems G. F. Bertsch ; R. A. Broglia |
title_full_unstemmed | Oscillations in finite quantum systems G. F. Bertsch ; R. A. Broglia |
title_short | Oscillations in finite quantum systems |
title_sort | oscillations in finite quantum systems |
topic | Atomes ram Cristaux métalliques ram Oscillations ram Problème des N corps ram Mathematische Physik Atoms Many-body problem Mathematical physics Metal crystals Nuclear physics Oscillations Quantenmechanisches System (DE-588)4300046-0 gnd Vielkörperproblem (DE-588)4078900-7 gnd Vielteilchentheorie (DE-588)4331960-9 gnd Atom (DE-588)4003412-4 gnd Mathematische Physik (DE-588)4037952-8 gnd Schwingung (DE-588)4053999-4 gnd Schwingungssystem (DE-588)4180568-9 gnd |
topic_facet | Atomes Cristaux métalliques Oscillations Problème des N corps Mathematische Physik Atoms Many-body problem Mathematical physics Metal crystals Nuclear physics Quantenmechanisches System Vielkörperproblem Vielteilchentheorie Atom Schwingung Schwingungssystem |
work_keys_str_mv | AT bertschgeorgef oscillationsinfinitequantumsystems AT brogliara oscillationsinfinitequantumsystems |