Lectures on the geometry of Poisson manifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Basel u.a.
Birkhäuser
1994
|
Schriftenreihe: | Progress in mathematics
118 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VI, 205 S. |
ISBN: | 3764350164 0817650164 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009543125 | ||
003 | DE-604 | ||
005 | 20040225 | ||
007 | t | ||
008 | 940420s1994 |||| 00||| eng d | ||
020 | |a 3764350164 |9 3-7643-5016-4 | ||
020 | |a 0817650164 |9 0-8176-5016-4 | ||
035 | |a (OCoLC)29843953 | ||
035 | |a (DE-599)BVBBV009543125 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-384 |a DE-91 |a DE-91G |a DE-29T |a DE-355 |a DE-703 |a DE-739 |a DE-824 |a DE-634 |a DE-83 |a DE-19 |a DE-11 |a DE-188 |a DE-20 | ||
050 | 0 | |a QA614.3 | |
082 | 0 | |a 516.3/62 |2 20 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a MAT 535f |2 stub | ||
084 | |a PHY 012f |2 stub | ||
084 | |a 58F05 |2 msc | ||
084 | |a MAT 173f |2 stub | ||
084 | |a 58B20 |2 msc | ||
100 | 1 | |a Vaisman, Izu |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lectures on the geometry of Poisson manifolds |c Izu Vaisman |
264 | 1 | |a Basel u.a. |b Birkhäuser |c 1994 | |
300 | |a VI, 205 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in mathematics |v 118 | |
650 | 7 | |a Manifolds |2 gtt | |
650 | 7 | |a Poisson, variétés de |2 ram | |
650 | 4 | |a Poisson manifolds | |
650 | 0 | 7 | |a Poisson-Mannigfaltigkeit |0 (DE-588)4231918-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Poisson-Mannigfaltigkeit |0 (DE-588)4231918-3 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Progress in mathematics |v 118 |w (DE-604)BV000004120 |9 118 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006303539&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-006303539 |
Datensatz im Suchindex
_version_ | 1804123882722951168 |
---|---|
adam_text | IMAGE 1
IZUVAISMAN
LECTURES ON THE GEOMETRY OF POISSON MANIFOLDS
BIRKHAEUSER VERLAG BASEL * BOSTON * BERLIN
IMAGE 2
TABLE OF CONTENTS
A C K N O W L E D G E M E NT VII
0 I N T R O D U C T I ON 1
1 T HE P O I S S ON B I V E C T OR A ND T HE S C H O U T E N - N I J E N
H U IS
B R A C K ET 5
1.1 T HE POISSON BIVECTOR 5
1.2 T HE SCHOUTEN-NIJENHUIS BRACKET 6
1.3 COORDINATE EXPRESSIONS 9
1.4 T HE KOSZUL FORMULA AND APPLICATIONS 12
1.5 MISCCLLANCA 16
2 T HE S Y M P L E C T IC F O L I A T I ON OF A P O I S S ON M A N I F O
LD 19
2.1 GENERAL DISTRIBUTIONS AND FOLIATIONS 19
2.2 INVOLUTIVITY AND INTEGRABILITY 21
2.3 T HE CASE OF POISSON MANIFOLDS 25
3 E X A M P L ES OF P O I S S ON M A N I F O L DS 31
3.1 STRUCTURES ON M*. LIE-POISSON STRUCTURES 31
3.2 DIRAC BRACKETS 36
3.3 FURTHER EXAMPLES 38
4 P O I S S ON C A L C U L US 41
4.1 T HE BRACKET OF 1-FORMS 41
4.2 T HE CONTRAVARIANT EXTERIOR DIFFERENTIATIONS 43
4.3 T HE REGULAER CASC 48
4.4 COFOLIATIONS 54
4.5 CONTRAVARIANT DERIVATIVES ON VECTOR BUNDLES 55
4.6 MORE BRACKETS 57
5 P O I S S ON C O H O M O L O GY 63
5.1 DEFINITION AND GENERAL PROPERTIES 63
5.2 STRAIGHTFORWARD AND INDUCTIVE COMPUTATIONS 67
5.3 T HE SPECTRAL SEQUENCE OF POISSON COHOMOLOGY 72
5.4 POISSON HOMOLOGY 77
IMAGE 3
VI TABLE OF CONTENTS
6 AN I N T R O D U C T I ON TO Q U A N T I Z A T I ON 83
6.1 PREQUANTIZATION 83
6.2 QUANTIZATION 87
6.3 PREQUANTIZATION REPRESENTATIONS 89
6.4 DEFORMATION QUANTIZATION 92
7 P O I S S ON M O R P H I S M S, C O I N D U C ED S T R U C T U R E S,
R E D U C T I ON 97
7.1 PROPERTIES OF POISSON MAPPINGS 97
7.2 REDUCTION OF POISSON STRUCTURES 101
7.3 GROUP ACTIONS AND M O M E N TA 107
7.4 GROUP ACTIONS AND REDUCTION 110
8 S Y M P L E C T IC R E A L I Z A T I O NS OF P O I S S ON M A N I F O
L DS 115
8.1 LOCAL SYMPLECTIC REALIZATIONS 115
8.2 DUAL PAIRS OF POISSON MANIFOLDS 121
8.3 ISOTROPIE REALIZATIONS 123
8.4 ISOTROPIE REALIZATIONS AND NETS 128
9 R E A L I Z A T I O NS OF P O I S S ON M A N I F O L DS BY
S Y M P L E C T IC G R O U P O I DS 135
9.1 REALIZATIONS OF LIE-POISSON STRUCTURES 135
9.2 T HE LIE GROUPOID A ND SYMPLECTIC STRUCTURES OF T*G 137
9.3 GENERAL SYMPLECTIC GROUPOIDS 143
9.4 LIE ALGEBROIDS AND T HE INTEGRABILITY OF POISSON MANIFOLDS 147
9.5 FURTHER INTEGRABILITY RESULTS 153
10 P O I S S O N - L IE G R O U PS 161
10.1 POISSON-LIE AND BIINVARIANT STRUCTURES ON LIE GROUPS 161
10.2 CHARACTCRISTIC PROPERTIES OF POISSON-LIE GROUPS 164
10.3 T HE LIE ALGEBRA OF A POISSON-LIE GROUP 169
10.4 T HE YANG-BAXTCR EQUATIONS 172
10.5 MANIN TRIPLES 178
10.6 ACTIONS AND DRESSING TRANSFORMATIONS 182
R E F E R E N C ES 189
I N D EX 203
|
any_adam_object | 1 |
author | Vaisman, Izu |
author_facet | Vaisman, Izu |
author_role | aut |
author_sort | Vaisman, Izu |
author_variant | i v iv |
building | Verbundindex |
bvnumber | BV009543125 |
callnumber-first | Q - Science |
callnumber-label | QA614 |
callnumber-raw | QA614.3 |
callnumber-search | QA614.3 |
callnumber-sort | QA 3614.3 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 350 |
classification_tum | MAT 535f PHY 012f MAT 173f |
ctrlnum | (OCoLC)29843953 (DE-599)BVBBV009543125 |
dewey-full | 516.3/62 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/62 |
dewey-search | 516.3/62 |
dewey-sort | 3516.3 262 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01718nam a2200469 cb4500</leader><controlfield tag="001">BV009543125</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040225 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940420s1994 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764350164</subfield><subfield code="9">3-7643-5016-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817650164</subfield><subfield code="9">0-8176-5016-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)29843953</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009543125</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA614.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/62</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 535f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 012f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58F05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 173f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58B20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vaisman, Izu</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on the geometry of Poisson manifolds</subfield><subfield code="c">Izu Vaisman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel u.a.</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 205 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematics</subfield><subfield code="v">118</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manifolds</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Poisson, variétés de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poisson manifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Poisson-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4231918-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Poisson-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4231918-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematics</subfield><subfield code="v">118</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">118</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006303539&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006303539</subfield></datafield></record></collection> |
id | DE-604.BV009543125 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:36:50Z |
institution | BVB |
isbn | 3764350164 0817650164 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006303539 |
oclc_num | 29843953 |
open_access_boolean | |
owner | DE-12 DE-384 DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-29T DE-355 DE-BY-UBR DE-703 DE-739 DE-824 DE-634 DE-83 DE-19 DE-BY-UBM DE-11 DE-188 DE-20 |
owner_facet | DE-12 DE-384 DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-29T DE-355 DE-BY-UBR DE-703 DE-739 DE-824 DE-634 DE-83 DE-19 DE-BY-UBM DE-11 DE-188 DE-20 |
physical | VI, 205 S. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in mathematics |
series2 | Progress in mathematics |
spelling | Vaisman, Izu Verfasser aut Lectures on the geometry of Poisson manifolds Izu Vaisman Basel u.a. Birkhäuser 1994 VI, 205 S. txt rdacontent n rdamedia nc rdacarrier Progress in mathematics 118 Manifolds gtt Poisson, variétés de ram Poisson manifolds Poisson-Mannigfaltigkeit (DE-588)4231918-3 gnd rswk-swf Poisson-Mannigfaltigkeit (DE-588)4231918-3 s DE-604 Progress in mathematics 118 (DE-604)BV000004120 118 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006303539&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Vaisman, Izu Lectures on the geometry of Poisson manifolds Progress in mathematics Manifolds gtt Poisson, variétés de ram Poisson manifolds Poisson-Mannigfaltigkeit (DE-588)4231918-3 gnd |
subject_GND | (DE-588)4231918-3 |
title | Lectures on the geometry of Poisson manifolds |
title_auth | Lectures on the geometry of Poisson manifolds |
title_exact_search | Lectures on the geometry of Poisson manifolds |
title_full | Lectures on the geometry of Poisson manifolds Izu Vaisman |
title_fullStr | Lectures on the geometry of Poisson manifolds Izu Vaisman |
title_full_unstemmed | Lectures on the geometry of Poisson manifolds Izu Vaisman |
title_short | Lectures on the geometry of Poisson manifolds |
title_sort | lectures on the geometry of poisson manifolds |
topic | Manifolds gtt Poisson, variétés de ram Poisson manifolds Poisson-Mannigfaltigkeit (DE-588)4231918-3 gnd |
topic_facet | Manifolds Poisson, variétés de Poisson manifolds Poisson-Mannigfaltigkeit |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006303539&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT vaismanizu lecturesonthegeometryofpoissonmanifolds |