A first course in probability models and statistical inference:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York u.a.
Springer
1994
|
Schriftenreihe: | Springer texts in statistics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXI, 717 S. graph. Darst. |
ISBN: | 3540941142 0387941142 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV009524657 | ||
003 | DE-604 | ||
005 | 19960326 | ||
007 | t | ||
008 | 940328s1994 gw d||| |||| 00||| eng d | ||
016 | 7 | |a 940644908 |2 DE-101 | |
020 | |a 3540941142 |9 3-540-94114-2 | ||
020 | |a 0387941142 |9 0-387-94114-2 | ||
035 | |a (OCoLC)605103473 | ||
035 | |a (DE-599)BVBBV009524657 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-824 |a DE-12 |a DE-91 |a DE-703 |a DE-739 |a DE-19 |a DE-20 |a DE-521 |a DE-634 |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA273.C847 1994 | |
082 | 0 | |a 519.5 |2 20 | |
082 | 0 | |a 519.5 20 | |
084 | |a SK 800 |0 (DE-625)143256: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a MAT 600f |2 stub | ||
084 | |a 27 |2 sdnb | ||
084 | |a MAT 620f |2 stub | ||
084 | |a 15 |2 sdnb | ||
100 | 1 | |a Creighton, James H. C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A first course in probability models and statistical inference |c J. H. C. Creighton |
264 | 1 | |a New York u.a. |b Springer |c 1994 | |
300 | |a XXXI, 717 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer texts in statistics | |
650 | 7 | |a Probabilités |2 ram | |
650 | 7 | |a Statistiek |2 gtt | |
650 | 7 | |a Statistique mathématique |2 ram | |
650 | 7 | |a Waarschijnlijkheidstheorie |2 gtt | |
650 | 4 | |a Statistik | |
650 | 4 | |a Probabilities | |
650 | 4 | |a Mathematical statistics | |
650 | 0 | 7 | |a Stochastisches Modell |0 (DE-588)4057633-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistische Schlussweise |0 (DE-588)4182963-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Statistische Schlussweise |0 (DE-588)4182963-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Stochastisches Modell |0 (DE-588)4057633-4 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006289340&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-006289340 |
Datensatz im Suchindex
_version_ | 1807682516954382336 |
---|---|
adam_text |
CONTENTS
STUDENT
'
S
INTRODUCTION
.
VII
INSTRUCTOR
'
S
INTRODUCTION
.
XI
ACKNOWLEDGMENTS
.
XXV
CHAPTER
1
-
INTRODUCTION
TO
PROBABILITY
MODELS
OF
THE
REAL
WORLD
2
1.1
PROBABILITY
DISTRIBUTIONS
OF
RANDOM
VARIABLES
.
3
PROBABILITY
MODELS
.
3
RANDOM
VARIABLES
AND
THEIR
RANDOM
EXPERIMENTS
.
5
1.2
PARAMETERS
TO
CHARACTERIZE
A
PROBABILITY
DISTRIBUTION
.
11
THE
EXPECTED
VALUE
OR
MEAN
OF
A
RANDOM
VARIABLE
.
11
THE
VARIANCE,
MEASURING
THE
ACCURACY
OF
THE
MEAN
.
14
1.3
LINEAR
FUNCTIONS
OF
A
RANDOM
VARIABLE
.
20
1.4
THE
FUNDAMENTALS
OF
PROBABILITY
THEORY
.
23
THREE
BASIC
RULES
OF
PROBABILITY
.
23
BAYES
'
THEOREM
.
25
RANDOM
EXPERIMENTS
WITH
EQUALLY
LIKELY
OUTCOMES
.
28
CHEBYSHEV
'
S
THEOREM
.
30
1.5
SOME
REVIEW
EXERCISES
.
32
XXVIII
CONTENTS
CHAPTER
2
-
UNDERSTANDING
OBSERVED
DATA
38
2.1
OBSERVED
DATA
FROM
THE
REAL
WORLD
.
39
PRESENTING
DATA
GRAPHICALLY
.
39
COLLECTING
DATA
.
42
SIMPLE
RANDOM
SAMPLES
DRAWN
FROM
A
PROBABILITY
DISTRIBUTION
.
46
POPULATIONS
.
49
STATISTICAL
QUESTIONS
.
51
SIMPLE
RANDOM
SAMPLES
DRAWN
FROM
A
POPULATION
.
54
2.2
PRESENTING
AND
SUMMARIZING
OBSERVED
NUMERIC
DATA
.
61
MEASURES
OF
CENTRALITY
FOR
OBSERVED
NUMERIC
DATA
.
61
MEASURES
OF
SPREAD
FOR
OBSERVED
NUMERIC
DATA
.65
2.3
GROUPED
DATA:
SUPPRESSING
IRRELEVANT
DETAIL
.68
GROUPED
DISTRIBUTIONS
OF
OBSERVED
REAL
WORLD
DATA
.
68
HISTOGRAMS:
GRAPHICAL
DISPLAY
OF
GROUPED
RELATIVE
FREQUENCY
DISTRIBUTIONS
.
71
2.4
USING
THE
COMPUTER
.
74
DESCRIBING,
PICTURING,
AND
COMPARING
POPULATION
AND
SAMPLE
DATA
.
74
CHAPTER
3
-
DISCRETE
PROBABILITY
MODELS
80
3.1
INTRODUCTION
.
81
3.2
THE
DISCRETE
UNIFORM
DISTRIBUTION
.
81
3.3
THE
HYPERGEOMETRIC
DISTRIBUTION
.
83
COUNTING
RULES
.
83
WHAT
IS
THE
HYPERGEOMETRIC
MODEL
.
85
CALCULATING
THE
PROBABILITIES
.
87
THE
FORMULAS
.89
3.4
SAMPLING
WITH
REPLACEMENT
FROM
A
DICHOTOMOUS
POPULATION
.93
WHAT
IS
THE
MODEL?
.
93
THE
FORMULAS
.95
3.5
THE
BERNOULLI
TRIAL
.
97
3.6
THE
GEOMETRIE
DISTRIBUTION
.98
WHAT
IS
THE
MODEL?
.
98
THE
FORMULAS
.
100
CONTENTS
XXIX
3.7
THE
BINOMIAL
DISTRIBUTION
.
104
THE
BINOMIAL
EXPERIMENT
.
104
THE
BINOMIAL
RANDOM
VARIABLE
ITSELF
.
107
3.8
THE
POISSON
DISTRIBUTION
.110
3.9
THE
NEGATIVE
BINOMIAL
DISTRIBUTION
.116
3.10
SOME
REVIEW
PROBLEMS
.120
CHAPTER
4
-
CONTINUOUS
PROBABILITY
MODELS
128
4.1
CONTINUOUS
DISTRIBUTIONS
AND
THE
CONTINUOUS
UNIFORM
DISTRIBUTION
.129
CONTINUOUS
DISTRIBUTIONS
.129
THE
PROBABILITY
DENSITY
FUNCTION
.130
THE
CONTINUOUS
UNIFORM
DISTRIBUTION
.
132
4.2
THE
EXPONENTIAL
DISTRIBUTION
.
135
MODELING
THE
RELIABILITY
OF
A
SYSTEM
.
135
THE
EXPONENTIAL
DISTRIBUTION
.
136
4.3
THE
NORMAL
DISTRIBUTION
.
140
THE
NORMAL
DISTRIBUTION
AS
A
MODEL
FOR
MEASUREMENT
ERROR
.
140
THE
NORMAL
DISTRIBUTION
AS
AN
ABSTRACT
MODEL
.
147
THE
STANDARDIZING
TRANSFORMATION
.
151
THE
NORMAL
PROBABILITY
PLOT
.
154
CONTINUOUS
APPROXIMATIONS
TO
INTEGER-VALUED
RANDOM
VARIABLES
.
156
THE
NORMAL
APPROXIMATION
TO
THE
BINOMIAL
.159
4.4
THE
CHI-SQUARED
DISTRIBUTION
.
161
4.5
A
FEW
REVIEW
PROBLEMS
.
163
CHAPTER
5
-
ESTIMATION
OF
PARAMETERS
168
5.1
PARAMETERS
AND
THEIR
ESTIMATORS
.
169
INTRODUCTION
.
169
ESTIMATORS
THE
ENTIRE
CONTEXT
.
173
5.2
ESTIMATING
AN
UNKNOWN
PROPORTION
.
176
THE
SAMPLING
DISTRIBUTION
FOR
P
.
176
ESTIMATING
THE
VALUE
OF
AN
UNKNOWN
P
.
180
CONSTRUCTING
THE
CONFIDENCE
INTERVAL
FOR
P
.184
XXX
CONTENTS
THE
EXACT
(ALMOST)
ENDPOINTS
OF
A
CONFIDENCE
INTERVAL
FOR
P
.
189
A
LESS
CONSERVATIVE
APPROACH
TO
THE
STANDARD
ERROR
FOR
P
.
.
190
TOO
MANY
APPROXIMATIONS:
ARE
THEY
VALID?
.
193
THE
APPROPRIATE
SAMPLE
SIZE
FOR
A
GIVEN
ERROR
TOLERANCE
.
194
5.3
ESTIMATING
AN
UNKNOWN
MEAN
.
196
THE
ESTIMATOR
X
.
196
THE
CENTRAL
LIMIT
THEOREM
.
197
THE
SAMPLING
DISTRIBUTION
FOR
X
.
199
CONSTRUCTING
A
CONFIDENCE
INTERVAL
FOR
P
.
200
ESTIMATING
THE
STANDARD
ERROR
(ER/
Y/N
S/Y/N),
USING
S
INSTEAD
OF
ER
TAKES
US
TO
STUDENT
'
S
^DISTRIBUTION
WHEN
THE
DISTRIBUTION
YOU
'
RE
SAMPLING
FROM
IS
NORMAL
.
208
5.4
A
CONFIDENCE
INTERVAL
ESTIMATE
FOR
AN
UNKNOWN
ER
.
214
5.5
ONE-SIDED
INTERVALS,
PREDICTION
INTERVALS,
TOLERANCE
INTERVALS
.
217
ONE-SIDED
CONFIDENCE
INTERVALS
.
217
PREDICTION
INTERVALS
FOR
OBSERVATIONS
FROM
A
NORMAL
DISTRIBUTION
.
218
TOLERANCE
INTERVALS
.
221
CHAPTER
6
-
INTRODUCTION
TO
TESTS
OF
STATISTICAL
HYPOTHESES
224
6.1
INTRODUCTION
.
225
STATISTICAL
HYPOTHESES
.
225
WHAT
ARE
THESE
TWO
TESTING
PROCEDURES?
.
227
CONTRASTING
THE
TWO
TESTING
PROCEDURES
.
229
6.2
TESTS
OF
SIGNIFICANCE
.
231
A
DIALOGUE
.
232
THE
P-VALUE
.
234
COMPARING
MEANS
AND
COMPARING
PROPORTIONS
(LARGE
SAMPLES):
TWO
NEW
PARAMETERS
AND
THEIR
ESTIMATORS
.
237
PRACTICAL
VERSUS
STATISTICAL
SIGNIFICANCE
.
241
THE
TEST
OF
SIGNIFICANCE
AS
AN
ARGUMENT
BY
CONTRADICTION
.
242
WHAT
IF
THE
P-VALUE
IS
NOT
SMALL?
.
243
A
CASE
WHERE
"
NOT
SMALL
P-VALUE
"
IS
CONCLUSIVE
AND
"
SMALL
"
NOT
.
245
CONTENTS
XXXI
CHI-SQUARED
TESTS
FOR
GOODNESS
OF
FIT,
HOMOGENEITY,
AND
INDEPENDENCE
.
249
6.3
HYPOTHESIS
TESTS
.
254
INTRODUCTION
.
254
SETTING
UP
THE
HYPOTHESIS
TEST
.
256
THE
POSSIBLE
ERRORS
.
259
REAL-WORLD
INTERPRETATION
OF
THE
CONCLUSIONS
AND
ERRORS
.
263
MOVING
IN
THE
DIRECTION
OF
COMMON
PRACTICE
.
265
THE
REJECTION
REGION
.
268
THE
DECISION
RULE
AND
TEST
STATISTIC
.
269
P-VALUES
FOR
HYPOTHESIS
TESTS
.
273
CONTROLLING
POWER
AND
TYPE
II
ERROR
.
274
6.4
A
SOMEWHAT
COMPREHENSIVE
REVIEW
.
279
CHAPTER
7
-
INTRODUCTION
TO
SIMPLE
LINEAR
REGRESSION
288
7.1
THE
SIMPLE
LINEAR
REGRESSION
MODEL
.
290
7.2
THE
LEAST
SQUARES
ESTIMATES
FOR
A
AND
SS
.
295
THE
PRINCIPLE
OF
LEAST
SQUARES
.
297
CALCULATING
THE
LEAST
SQUARES
ESTIMATE
OF
A
AND
SS
.
300
7.3
USING
THE
SIMPLE
LINEAR
REGRESSION
MODEL
.
305
TESTING
HYPOTHESES
CONCERNING
SS
.
308
THE
COEFFICIENT
OF
DETERMINATION
.311
CONFIDENCE
INTERVALS
TO
PREDICT
HY
\
X
OR
THE
AVERAGE
OF
A
FEW
Y
'
S
FOR
X
P
,
A
PARTICULAR
VALUE
OF
X
.
317
7.4
SOME
REVIEW
PROBLEMS
.
321
THE
DATA
.321
ANSWERS
TO
TRY
YOUR
HAND
-
LEVEL
1
.
326
ANSWERS
TO
TRY
YOUR
HAND
-
LEVEL
II
.
442
TABLES
.
702
THE
STANDARD
NORMAL
DISTRIBUTION
.
703
STUDENT
'
S
I-DISTRIBUTION
.
704
THE
CHI-SQUARED
DISTRIBUTION
.
705
BIBLIOGRAPHY
.
707
INDEX
OF
NOTATION
.
709
AUTHOR
INDEX
.
711
SUBJECT
INDEX
.
713 |
any_adam_object | 1 |
author | Creighton, James H. C. |
author_facet | Creighton, James H. C. |
author_role | aut |
author_sort | Creighton, James H. C. |
author_variant | j h c c jhc jhcc |
building | Verbundindex |
bvnumber | BV009524657 |
callnumber-first | Q - Science |
callnumber-label | QA273 |
callnumber-raw | QA273.C847 1994 |
callnumber-search | QA273.C847 1994 |
callnumber-sort | QA 3273 C847 41994 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 800 SK 820 |
classification_tum | MAT 600f MAT 620f |
ctrlnum | (OCoLC)605103473 (DE-599)BVBBV009524657 |
dewey-full | 519.5 519.520 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 519.5 20 |
dewey-search | 519.5 519.5 20 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV009524657</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19960326</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940328s1994 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">940644908</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540941142</subfield><subfield code="9">3-540-94114-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387941142</subfield><subfield code="9">0-387-94114-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)605103473</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009524657</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA273.C847 1994</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5 20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 800</subfield><subfield code="0">(DE-625)143256:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 600f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">27</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 620f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Creighton, James H. C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A first course in probability models and statistical inference</subfield><subfield code="c">J. H. C. Creighton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York u.a.</subfield><subfield code="b">Springer</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXI, 717 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer texts in statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Probabilités</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistiek</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistique mathématique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Waarschijnlijkheidstheorie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Schlussweise</subfield><subfield code="0">(DE-588)4182963-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Statistische Schlussweise</subfield><subfield code="0">(DE-588)4182963-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006289340&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006289340</subfield></datafield></record></collection> |
id | DE-604.BV009524657 |
illustrated | Illustrated |
indexdate | 2024-08-18T00:19:48Z |
institution | BVB |
isbn | 3540941142 0387941142 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006289340 |
oclc_num | 605103473 |
open_access_boolean | |
owner | DE-824 DE-12 DE-91 DE-BY-TUM DE-703 DE-739 DE-19 DE-BY-UBM DE-20 DE-521 DE-634 DE-83 DE-11 DE-188 |
owner_facet | DE-824 DE-12 DE-91 DE-BY-TUM DE-703 DE-739 DE-19 DE-BY-UBM DE-20 DE-521 DE-634 DE-83 DE-11 DE-188 |
physical | XXXI, 717 S. graph. Darst. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer |
record_format | marc |
series2 | Springer texts in statistics |
spelling | Creighton, James H. C. Verfasser aut A first course in probability models and statistical inference J. H. C. Creighton New York u.a. Springer 1994 XXXI, 717 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Springer texts in statistics Probabilités ram Statistiek gtt Statistique mathématique ram Waarschijnlijkheidstheorie gtt Statistik Probabilities Mathematical statistics Stochastisches Modell (DE-588)4057633-4 gnd rswk-swf Statistische Schlussweise (DE-588)4182963-3 gnd rswk-swf Statistische Schlussweise (DE-588)4182963-3 s DE-604 Stochastisches Modell (DE-588)4057633-4 s DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006289340&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Creighton, James H. C. A first course in probability models and statistical inference Probabilités ram Statistiek gtt Statistique mathématique ram Waarschijnlijkheidstheorie gtt Statistik Probabilities Mathematical statistics Stochastisches Modell (DE-588)4057633-4 gnd Statistische Schlussweise (DE-588)4182963-3 gnd |
subject_GND | (DE-588)4057633-4 (DE-588)4182963-3 |
title | A first course in probability models and statistical inference |
title_auth | A first course in probability models and statistical inference |
title_exact_search | A first course in probability models and statistical inference |
title_full | A first course in probability models and statistical inference J. H. C. Creighton |
title_fullStr | A first course in probability models and statistical inference J. H. C. Creighton |
title_full_unstemmed | A first course in probability models and statistical inference J. H. C. Creighton |
title_short | A first course in probability models and statistical inference |
title_sort | a first course in probability models and statistical inference |
topic | Probabilités ram Statistiek gtt Statistique mathématique ram Waarschijnlijkheidstheorie gtt Statistik Probabilities Mathematical statistics Stochastisches Modell (DE-588)4057633-4 gnd Statistische Schlussweise (DE-588)4182963-3 gnd |
topic_facet | Probabilités Statistiek Statistique mathématique Waarschijnlijkheidstheorie Statistik Probabilities Mathematical statistics Stochastisches Modell Statistische Schlussweise |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006289340&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT creightonjameshc afirstcourseinprobabilitymodelsandstatisticalinference |