EPOCH: a coherent P-stable discretization scheme for highly oscillatory ordinary differential equations
Abstract: "This paper presents a new discretization scheme for the efficient integration of highly oscillatory second-order differential equations. The construction of the method is based on the principle of coherence due to Hersch. The analysis proves consistency, P-stability, and a phase-lag...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
München
1993
|
Schriftenreihe: | Technische Universität <München>: TUM-MATH
9321 |
Schlagworte: | |
Zusammenfassung: | Abstract: "This paper presents a new discretization scheme for the efficient integration of highly oscillatory second-order differential equations. The construction of the method is based on the principle of coherence due to Hersch. The analysis proves consistency, P-stability, and a phase-lag of the order [infinity] for the multistep formulas. The variable step size variable order multistep code EPCOH integrates efficiently and reliably problems arising from circuit simulation and mechanics." |
Beschreibung: | 19 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009298118 | ||
003 | DE-604 | ||
005 | 20040413 | ||
007 | t | ||
008 | 940321s1993 gw d||| t||| 00||| eng d | ||
016 | 7 | |a 940568829 |2 DE-101 | |
035 | |a (OCoLC)32511767 | ||
035 | |a (DE-599)BVBBV009298118 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-12 |a DE-91G | ||
088 | |a TUM M 9321 | ||
100 | 1 | |a Denk, Georg |e Verfasser |4 aut | |
245 | 1 | 0 | |a EPOCH |b a coherent P-stable discretization scheme for highly oscillatory ordinary differential equations |c Georg Denk |
264 | 1 | |a München |c 1993 | |
300 | |a 19 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Technische Universität <München>: TUM-MATH |v 9321 | |
520 | 3 | |a Abstract: "This paper presents a new discretization scheme for the efficient integration of highly oscillatory second-order differential equations. The construction of the method is based on the principle of coherence due to Hersch. The analysis proves consistency, P-stability, and a phase-lag of the order [infinity] for the multistep formulas. The variable step size variable order multistep code EPCOH integrates efficiently and reliably problems arising from circuit simulation and mechanics." | |
650 | 4 | |a Differential equations | |
830 | 0 | |a Technische Universität <München>: TUM-MATH |v 9321 |w (DE-604)BV006186461 |9 9321 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006187383 |
Datensatz im Suchindex
_version_ | 1804123739329134592 |
---|---|
any_adam_object | |
author | Denk, Georg |
author_facet | Denk, Georg |
author_role | aut |
author_sort | Denk, Georg |
author_variant | g d gd |
building | Verbundindex |
bvnumber | BV009298118 |
ctrlnum | (OCoLC)32511767 (DE-599)BVBBV009298118 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01508nam a2200325 cb4500</leader><controlfield tag="001">BV009298118</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040413 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940321s1993 gw d||| t||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">940568829</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)32511767</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009298118</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">TUM M 9321</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Denk, Georg</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">EPOCH</subfield><subfield code="b">a coherent P-stable discretization scheme for highly oscillatory ordinary differential equations</subfield><subfield code="c">Georg Denk</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">19 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Technische Universität <München>: TUM-MATH</subfield><subfield code="v">9321</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "This paper presents a new discretization scheme for the efficient integration of highly oscillatory second-order differential equations. The construction of the method is based on the principle of coherence due to Hersch. The analysis proves consistency, P-stability, and a phase-lag of the order [infinity] for the multistep formulas. The variable step size variable order multistep code EPCOH integrates efficiently and reliably problems arising from circuit simulation and mechanics."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Technische Universität <München>: TUM-MATH</subfield><subfield code="v">9321</subfield><subfield code="w">(DE-604)BV006186461</subfield><subfield code="9">9321</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006187383</subfield></datafield></record></collection> |
id | DE-604.BV009298118 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:34:33Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006187383 |
oclc_num | 32511767 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM |
owner_facet | DE-12 DE-91G DE-BY-TUM |
physical | 19 S. graph. Darst. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
record_format | marc |
series | Technische Universität <München>: TUM-MATH |
series2 | Technische Universität <München>: TUM-MATH |
spelling | Denk, Georg Verfasser aut EPOCH a coherent P-stable discretization scheme for highly oscillatory ordinary differential equations Georg Denk München 1993 19 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Technische Universität <München>: TUM-MATH 9321 Abstract: "This paper presents a new discretization scheme for the efficient integration of highly oscillatory second-order differential equations. The construction of the method is based on the principle of coherence due to Hersch. The analysis proves consistency, P-stability, and a phase-lag of the order [infinity] for the multistep formulas. The variable step size variable order multistep code EPCOH integrates efficiently and reliably problems arising from circuit simulation and mechanics." Differential equations Technische Universität <München>: TUM-MATH 9321 (DE-604)BV006186461 9321 |
spellingShingle | Denk, Georg EPOCH a coherent P-stable discretization scheme for highly oscillatory ordinary differential equations Technische Universität <München>: TUM-MATH Differential equations |
title | EPOCH a coherent P-stable discretization scheme for highly oscillatory ordinary differential equations |
title_auth | EPOCH a coherent P-stable discretization scheme for highly oscillatory ordinary differential equations |
title_exact_search | EPOCH a coherent P-stable discretization scheme for highly oscillatory ordinary differential equations |
title_full | EPOCH a coherent P-stable discretization scheme for highly oscillatory ordinary differential equations Georg Denk |
title_fullStr | EPOCH a coherent P-stable discretization scheme for highly oscillatory ordinary differential equations Georg Denk |
title_full_unstemmed | EPOCH a coherent P-stable discretization scheme for highly oscillatory ordinary differential equations Georg Denk |
title_short | EPOCH |
title_sort | epoch a coherent p stable discretization scheme for highly oscillatory ordinary differential equations |
title_sub | a coherent P-stable discretization scheme for highly oscillatory ordinary differential equations |
topic | Differential equations |
topic_facet | Differential equations |
volume_link | (DE-604)BV006186461 |
work_keys_str_mv | AT denkgeorg epochacoherentpstablediscretizationschemeforhighlyoscillatoryordinarydifferentialequations |