Fast computation of divided differences and parallel hermite interpolation:
Abstract: "We present parallel algorithms for fast polynomial interpolation. These algorithms can be used for constructing and evaluating polynomials interpolating the function values and its derivatives of arbitrary order (Hermite interpolation). For interpolation, the parallel arithmetic comp...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Urbana, Ill.
1989
|
Schriftenreihe: | Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report
800 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We present parallel algorithms for fast polynomial interpolation. These algorithms can be used for constructing and evaluating polynomials interpolating the function values and its derivatives of arbitrary order (Hermite interpolation). For interpolation, the parallel arithmetic complexity is O(log[superscript 2]M + logN) for large M and N, where M-1 is the order of the highest derivative information and N is the number of distinct points used. Unlike alternate approaches which use the Lagrange representation, the algorithms described in this paper are based on the fast parallel evaluation of a closed formula for the generalized divided differences Applications to the solution of dual Vandermonde and confluent Vandermonde systems are described. This work extends previous results in polynomial interpolation and improves the parallel time complexity of existing algorithms. |
Beschreibung: | 19 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009258342 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 940313s1989 |||| 00||| eng d | ||
035 | |a (OCoLC)21169343 | ||
035 | |a (DE-599)BVBBV009258342 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Egecioglu, Omer |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fast computation of divided differences and parallel hermite interpolation |c Omer Egecioglu, E. Gallopoulos, and Cetin Koc |
264 | 1 | |a Urbana, Ill. |c 1989 | |
300 | |a 19 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report |v 800 | |
520 | 3 | |a Abstract: "We present parallel algorithms for fast polynomial interpolation. These algorithms can be used for constructing and evaluating polynomials interpolating the function values and its derivatives of arbitrary order (Hermite interpolation). For interpolation, the parallel arithmetic complexity is O(log[superscript 2]M + logN) for large M and N, where M-1 is the order of the highest derivative information and N is the number of distinct points used. Unlike alternate approaches which use the Lagrange representation, the algorithms described in this paper are based on the fast parallel evaluation of a closed formula for the generalized divided differences | |
520 | 3 | |a Applications to the solution of dual Vandermonde and confluent Vandermonde systems are described. This work extends previous results in polynomial interpolation and improves the parallel time complexity of existing algorithms. | |
650 | 4 | |a Parallel programming (Computer science) | |
650 | 4 | |a Polynomials | |
700 | 1 | |a Gallopoulos, Efstratios |e Verfasser |4 aut | |
700 | 1 | |a Koç, Çetin Kaya |d 1957- |e Verfasser |0 (DE-588)121427536 |4 aut | |
830 | 0 | |a Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report |v 800 |w (DE-604)BV008930033 |9 800 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006160398 |
Datensatz im Suchindex
_version_ | 1804123705579667456 |
---|---|
any_adam_object | |
author | Egecioglu, Omer Gallopoulos, Efstratios Koç, Çetin Kaya 1957- |
author_GND | (DE-588)121427536 |
author_facet | Egecioglu, Omer Gallopoulos, Efstratios Koç, Çetin Kaya 1957- |
author_role | aut aut aut |
author_sort | Egecioglu, Omer |
author_variant | o e oe e g eg ç k k çk çkk |
building | Verbundindex |
bvnumber | BV009258342 |
ctrlnum | (OCoLC)21169343 (DE-599)BVBBV009258342 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02071nam a2200337 cb4500</leader><controlfield tag="001">BV009258342</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940313s1989 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)21169343</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009258342</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Egecioglu, Omer</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fast computation of divided differences and parallel hermite interpolation</subfield><subfield code="c">Omer Egecioglu, E. Gallopoulos, and Cetin Koc</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Urbana, Ill.</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">19 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report</subfield><subfield code="v">800</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We present parallel algorithms for fast polynomial interpolation. These algorithms can be used for constructing and evaluating polynomials interpolating the function values and its derivatives of arbitrary order (Hermite interpolation). For interpolation, the parallel arithmetic complexity is O(log[superscript 2]M + logN) for large M and N, where M-1 is the order of the highest derivative information and N is the number of distinct points used. Unlike alternate approaches which use the Lagrange representation, the algorithms described in this paper are based on the fast parallel evaluation of a closed formula for the generalized divided differences</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Applications to the solution of dual Vandermonde and confluent Vandermonde systems are described. This work extends previous results in polynomial interpolation and improves the parallel time complexity of existing algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parallel programming (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomials</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gallopoulos, Efstratios</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koç, Çetin Kaya</subfield><subfield code="d">1957-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121427536</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report</subfield><subfield code="v">800</subfield><subfield code="w">(DE-604)BV008930033</subfield><subfield code="9">800</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006160398</subfield></datafield></record></collection> |
id | DE-604.BV009258342 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:34:01Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006160398 |
oclc_num | 21169343 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | 19 S. |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
record_format | marc |
series | Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report |
series2 | Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report |
spelling | Egecioglu, Omer Verfasser aut Fast computation of divided differences and parallel hermite interpolation Omer Egecioglu, E. Gallopoulos, and Cetin Koc Urbana, Ill. 1989 19 S. txt rdacontent n rdamedia nc rdacarrier Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report 800 Abstract: "We present parallel algorithms for fast polynomial interpolation. These algorithms can be used for constructing and evaluating polynomials interpolating the function values and its derivatives of arbitrary order (Hermite interpolation). For interpolation, the parallel arithmetic complexity is O(log[superscript 2]M + logN) for large M and N, where M-1 is the order of the highest derivative information and N is the number of distinct points used. Unlike alternate approaches which use the Lagrange representation, the algorithms described in this paper are based on the fast parallel evaluation of a closed formula for the generalized divided differences Applications to the solution of dual Vandermonde and confluent Vandermonde systems are described. This work extends previous results in polynomial interpolation and improves the parallel time complexity of existing algorithms. Parallel programming (Computer science) Polynomials Gallopoulos, Efstratios Verfasser aut Koç, Çetin Kaya 1957- Verfasser (DE-588)121427536 aut Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report 800 (DE-604)BV008930033 800 |
spellingShingle | Egecioglu, Omer Gallopoulos, Efstratios Koç, Çetin Kaya 1957- Fast computation of divided differences and parallel hermite interpolation Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report Parallel programming (Computer science) Polynomials |
title | Fast computation of divided differences and parallel hermite interpolation |
title_auth | Fast computation of divided differences and parallel hermite interpolation |
title_exact_search | Fast computation of divided differences and parallel hermite interpolation |
title_full | Fast computation of divided differences and parallel hermite interpolation Omer Egecioglu, E. Gallopoulos, and Cetin Koc |
title_fullStr | Fast computation of divided differences and parallel hermite interpolation Omer Egecioglu, E. Gallopoulos, and Cetin Koc |
title_full_unstemmed | Fast computation of divided differences and parallel hermite interpolation Omer Egecioglu, E. Gallopoulos, and Cetin Koc |
title_short | Fast computation of divided differences and parallel hermite interpolation |
title_sort | fast computation of divided differences and parallel hermite interpolation |
topic | Parallel programming (Computer science) Polynomials |
topic_facet | Parallel programming (Computer science) Polynomials |
volume_link | (DE-604)BV008930033 |
work_keys_str_mv | AT egeciogluomer fastcomputationofdivideddifferencesandparallelhermiteinterpolation AT gallopoulosefstratios fastcomputationofdivideddifferencesandparallelhermiteinterpolation AT koccetinkaya fastcomputationofdivideddifferencesandparallelhermiteinterpolation |