Fast and practical parallel polynomial interpolation:
Abstract: "We present fast and practical parallel algorithms for the computation and evaluation of interpolating polynomials. The algorithms make use of fast parallel prefix techniques for the calculation of divided differences in the Newton representation of the interpolating polynomial. For n...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Urbana, Ill.
1987
|
Schriftenreihe: | Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report
646 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We present fast and practical parallel algorithms for the computation and evaluation of interpolating polynomials. The algorithms make use of fast parallel prefix techniques for the calculation of divided differences in the Newton representation of the interpolating polynomial. For n+1 given input pairs the proposed interpolation algorithm requires 2[log(n+1)]+2 parallel arithmetic steps and circuit size O(n p2 s). The algorithms are numerically stable and their floating-point implementation results in error accumulation similar to that of the widely used serial algorithms. This is in contrast to other fast serial and parallel interpolation algorithms which are subject to much larger roundoff We demonstrate that in a distributed memory environment context, a cube connected system is very suitable for the algorithms' implemetation, exhibiting very small communication cost. As further advantages we note that our techniques does not require equidistant points, preconditioning, or use of the Fast Fourier Transform. |
Beschreibung: | 23, 7 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009245705 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 940313s1987 |||| 00||| eng d | ||
035 | |a (OCoLC)20843831 | ||
035 | |a (DE-599)BVBBV009245705 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
050 | 0 | |a QA76.88 | |
100 | 1 | |a Egecioglu, Omer |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fast and practical parallel polynomial interpolation |c Omer Egecioglu, E. Gallopoulos, and Cetin K. Koc |
264 | 1 | |a Urbana, Ill. |c 1987 | |
300 | |a 23, 7 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report |v 646 | |
520 | 3 | |a Abstract: "We present fast and practical parallel algorithms for the computation and evaluation of interpolating polynomials. The algorithms make use of fast parallel prefix techniques for the calculation of divided differences in the Newton representation of the interpolating polynomial. For n+1 given input pairs the proposed interpolation algorithm requires 2[log(n+1)]+2 parallel arithmetic steps and circuit size O(n p2 s). The algorithms are numerically stable and their floating-point implementation results in error accumulation similar to that of the widely used serial algorithms. This is in contrast to other fast serial and parallel interpolation algorithms which are subject to much larger roundoff | |
520 | 3 | |a We demonstrate that in a distributed memory environment context, a cube connected system is very suitable for the algorithms' implemetation, exhibiting very small communication cost. As further advantages we note that our techniques does not require equidistant points, preconditioning, or use of the Fast Fourier Transform. | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Parallel processing (Electronic computers) | |
650 | 4 | |a Polynomials | |
700 | 1 | |a Gallopoulos, Efstratios |e Verfasser |4 aut | |
700 | 1 | |a Koç, Çetin Kaya |d 1957- |e Verfasser |0 (DE-588)121427536 |4 aut | |
830 | 0 | |a Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report |v 646 |w (DE-604)BV008930033 |9 646 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006152051 |
Datensatz im Suchindex
_version_ | 1804123692944326656 |
---|---|
any_adam_object | |
author | Egecioglu, Omer Gallopoulos, Efstratios Koç, Çetin Kaya 1957- |
author_GND | (DE-588)121427536 |
author_facet | Egecioglu, Omer Gallopoulos, Efstratios Koç, Çetin Kaya 1957- |
author_role | aut aut aut |
author_sort | Egecioglu, Omer |
author_variant | o e oe e g eg ç k k çk çkk |
building | Verbundindex |
bvnumber | BV009245705 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.88 |
callnumber-search | QA76.88 |
callnumber-sort | QA 276.88 |
callnumber-subject | QA - Mathematics |
ctrlnum | (OCoLC)20843831 (DE-599)BVBBV009245705 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02252nam a2200361 cb4500</leader><controlfield tag="001">BV009245705</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940313s1987 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)20843831</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009245705</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.88</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Egecioglu, Omer</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fast and practical parallel polynomial interpolation</subfield><subfield code="c">Omer Egecioglu, E. Gallopoulos, and Cetin K. Koc</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Urbana, Ill.</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">23, 7 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report</subfield><subfield code="v">646</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We present fast and practical parallel algorithms for the computation and evaluation of interpolating polynomials. The algorithms make use of fast parallel prefix techniques for the calculation of divided differences in the Newton representation of the interpolating polynomial. For n+1 given input pairs the proposed interpolation algorithm requires 2[log(n+1)]+2 parallel arithmetic steps and circuit size O(n p2 s). The algorithms are numerically stable and their floating-point implementation results in error accumulation similar to that of the widely used serial algorithms. This is in contrast to other fast serial and parallel interpolation algorithms which are subject to much larger roundoff</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">We demonstrate that in a distributed memory environment context, a cube connected system is very suitable for the algorithms' implemetation, exhibiting very small communication cost. As further advantages we note that our techniques does not require equidistant points, preconditioning, or use of the Fast Fourier Transform.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parallel processing (Electronic computers)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomials</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gallopoulos, Efstratios</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koç, Çetin Kaya</subfield><subfield code="d">1957-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121427536</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report</subfield><subfield code="v">646</subfield><subfield code="w">(DE-604)BV008930033</subfield><subfield code="9">646</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006152051</subfield></datafield></record></collection> |
id | DE-604.BV009245705 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:33:49Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006152051 |
oclc_num | 20843831 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | 23, 7 S. |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
record_format | marc |
series | Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report |
series2 | Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report |
spelling | Egecioglu, Omer Verfasser aut Fast and practical parallel polynomial interpolation Omer Egecioglu, E. Gallopoulos, and Cetin K. Koc Urbana, Ill. 1987 23, 7 S. txt rdacontent n rdamedia nc rdacarrier Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report 646 Abstract: "We present fast and practical parallel algorithms for the computation and evaluation of interpolating polynomials. The algorithms make use of fast parallel prefix techniques for the calculation of divided differences in the Newton representation of the interpolating polynomial. For n+1 given input pairs the proposed interpolation algorithm requires 2[log(n+1)]+2 parallel arithmetic steps and circuit size O(n p2 s). The algorithms are numerically stable and their floating-point implementation results in error accumulation similar to that of the widely used serial algorithms. This is in contrast to other fast serial and parallel interpolation algorithms which are subject to much larger roundoff We demonstrate that in a distributed memory environment context, a cube connected system is very suitable for the algorithms' implemetation, exhibiting very small communication cost. As further advantages we note that our techniques does not require equidistant points, preconditioning, or use of the Fast Fourier Transform. Algorithms Parallel processing (Electronic computers) Polynomials Gallopoulos, Efstratios Verfasser aut Koç, Çetin Kaya 1957- Verfasser (DE-588)121427536 aut Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report 646 (DE-604)BV008930033 646 |
spellingShingle | Egecioglu, Omer Gallopoulos, Efstratios Koç, Çetin Kaya 1957- Fast and practical parallel polynomial interpolation Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report Algorithms Parallel processing (Electronic computers) Polynomials |
title | Fast and practical parallel polynomial interpolation |
title_auth | Fast and practical parallel polynomial interpolation |
title_exact_search | Fast and practical parallel polynomial interpolation |
title_full | Fast and practical parallel polynomial interpolation Omer Egecioglu, E. Gallopoulos, and Cetin K. Koc |
title_fullStr | Fast and practical parallel polynomial interpolation Omer Egecioglu, E. Gallopoulos, and Cetin K. Koc |
title_full_unstemmed | Fast and practical parallel polynomial interpolation Omer Egecioglu, E. Gallopoulos, and Cetin K. Koc |
title_short | Fast and practical parallel polynomial interpolation |
title_sort | fast and practical parallel polynomial interpolation |
topic | Algorithms Parallel processing (Electronic computers) Polynomials |
topic_facet | Algorithms Parallel processing (Electronic computers) Polynomials |
volume_link | (DE-604)BV008930033 |
work_keys_str_mv | AT egeciogluomer fastandpracticalparallelpolynomialinterpolation AT gallopoulosefstratios fastandpracticalparallelpolynomialinterpolation AT koccetinkaya fastandpracticalparallelpolynomialinterpolation |