Fast matrix multiplication without APA-algorithms:
The method of trilinear aggregating with implicit canceling for the design of fast matrix multiplication (MM) algorithms is revised and is formally presented with the use of Generating Tables and of linear transformations of the problem of MM. It is shown how to derive the exponent of MM below 2.67...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Stanford, Calif.
1981
|
Schriftenreihe: | Stanford University / Computer Science Department: Report STAN-CS
882 |
Schlagworte: | |
Zusammenfassung: | The method of trilinear aggregating with implicit canceling for the design of fast matrix multiplication (MM) algorithms is revised and is formally presented with the use of Generating Tables and of linear transformations of the problem of MM. It is shown how to derive the exponent of MM below 2.67 even without the use of approximation algorithms. (Author). |
Beschreibung: | 30 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009075625 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 940227s1981 |||| 00||| eng d | ||
035 | |a (OCoLC)227529852 | ||
035 | |a (DE-599)BVBBV009075625 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Pan, Victor |d 1939- |e Verfasser |0 (DE-588)110340566 |4 aut | |
245 | 1 | 0 | |a Fast matrix multiplication without APA-algorithms |c V. Pan |
264 | 1 | |a Stanford, Calif. |c 1981 | |
300 | |a 30 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Stanford University / Computer Science Department: Report STAN-CS |v 882 | |
520 | 3 | |a The method of trilinear aggregating with implicit canceling for the design of fast matrix multiplication (MM) algorithms is revised and is formally presented with the use of Generating Tables and of linear transformations of the problem of MM. It is shown how to derive the exponent of MM below 2.67 even without the use of approximation algorithms. (Author). | |
650 | 4 | |a Fast matrix multiplication | |
650 | 7 | |a Algorithms |2 dtict | |
650 | 7 | |a Linear systems |2 dtict | |
650 | 7 | |a Matrices(mathematics) |2 dtict | |
650 | 7 | |a Matrix theory |2 dtict | |
650 | 7 | |a Multiplication |2 dtict | |
650 | 7 | |a Tensors |2 dtict | |
650 | 7 | |a Theoretical Mathematics |2 scgdst | |
650 | 7 | |a Transformations(mathematics) |2 dtict | |
810 | 2 | |a Computer Science Department: Report STAN-CS |t Stanford University |v 882 |w (DE-604)BV008928280 |9 882 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006012966 |
Datensatz im Suchindex
_version_ | 1804123489399996416 |
---|---|
any_adam_object | |
author | Pan, Victor 1939- |
author_GND | (DE-588)110340566 |
author_facet | Pan, Victor 1939- |
author_role | aut |
author_sort | Pan, Victor 1939- |
author_variant | v p vp |
building | Verbundindex |
bvnumber | BV009075625 |
ctrlnum | (OCoLC)227529852 (DE-599)BVBBV009075625 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01606nam a2200385 cb4500</leader><controlfield tag="001">BV009075625</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940227s1981 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227529852</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009075625</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pan, Victor</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)110340566</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fast matrix multiplication without APA-algorithms</subfield><subfield code="c">V. Pan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Stanford, Calif.</subfield><subfield code="c">1981</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">30 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Stanford University / Computer Science Department: Report STAN-CS</subfield><subfield code="v">882</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">The method of trilinear aggregating with implicit canceling for the design of fast matrix multiplication (MM) algorithms is revised and is formally presented with the use of Generating Tables and of linear transformations of the problem of MM. It is shown how to derive the exponent of MM below 2.67 even without the use of approximation algorithms. (Author).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fast matrix multiplication</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithms</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Linear systems</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrices(mathematics)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrix theory</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multiplication</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tensors</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Theoretical Mathematics</subfield><subfield code="2">scgdst</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transformations(mathematics)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Computer Science Department: Report STAN-CS</subfield><subfield code="t">Stanford University</subfield><subfield code="v">882</subfield><subfield code="w">(DE-604)BV008928280</subfield><subfield code="9">882</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006012966</subfield></datafield></record></collection> |
id | DE-604.BV009075625 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:30:35Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006012966 |
oclc_num | 227529852 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | 30 S. |
publishDate | 1981 |
publishDateSearch | 1981 |
publishDateSort | 1981 |
record_format | marc |
series2 | Stanford University / Computer Science Department: Report STAN-CS |
spelling | Pan, Victor 1939- Verfasser (DE-588)110340566 aut Fast matrix multiplication without APA-algorithms V. Pan Stanford, Calif. 1981 30 S. txt rdacontent n rdamedia nc rdacarrier Stanford University / Computer Science Department: Report STAN-CS 882 The method of trilinear aggregating with implicit canceling for the design of fast matrix multiplication (MM) algorithms is revised and is formally presented with the use of Generating Tables and of linear transformations of the problem of MM. It is shown how to derive the exponent of MM below 2.67 even without the use of approximation algorithms. (Author). Fast matrix multiplication Algorithms dtict Linear systems dtict Matrices(mathematics) dtict Matrix theory dtict Multiplication dtict Tensors dtict Theoretical Mathematics scgdst Transformations(mathematics) dtict Computer Science Department: Report STAN-CS Stanford University 882 (DE-604)BV008928280 882 |
spellingShingle | Pan, Victor 1939- Fast matrix multiplication without APA-algorithms Fast matrix multiplication Algorithms dtict Linear systems dtict Matrices(mathematics) dtict Matrix theory dtict Multiplication dtict Tensors dtict Theoretical Mathematics scgdst Transformations(mathematics) dtict |
title | Fast matrix multiplication without APA-algorithms |
title_auth | Fast matrix multiplication without APA-algorithms |
title_exact_search | Fast matrix multiplication without APA-algorithms |
title_full | Fast matrix multiplication without APA-algorithms V. Pan |
title_fullStr | Fast matrix multiplication without APA-algorithms V. Pan |
title_full_unstemmed | Fast matrix multiplication without APA-algorithms V. Pan |
title_short | Fast matrix multiplication without APA-algorithms |
title_sort | fast matrix multiplication without apa algorithms |
topic | Fast matrix multiplication Algorithms dtict Linear systems dtict Matrices(mathematics) dtict Matrix theory dtict Multiplication dtict Tensors dtict Theoretical Mathematics scgdst Transformations(mathematics) dtict |
topic_facet | Fast matrix multiplication Algorithms Linear systems Matrices(mathematics) Matrix theory Multiplication Tensors Theoretical Mathematics Transformations(mathematics) |
volume_link | (DE-604)BV008928280 |
work_keys_str_mv | AT panvictor fastmatrixmultiplicationwithoutapaalgorithms |