Perpetual reductions in orthogonal combinatory reduction systems:

Abstract: "We design a strategy that for any given term t in an Orthogonal Combinatory Reduction System (OCRS) (that is, a Term Rewriting System with bound variables and substitutions) constructs a longest reduction starting from t if t is strongly normalizable, and constructs an infinite reduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Khasidashvili, Zurab (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Amsterdam 1993
Schriftenreihe:Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS 93,49
Schlagworte:
Zusammenfassung:Abstract: "We design a strategy that for any given term t in an Orthogonal Combinatory Reduction System (OCRS) (that is, a Term Rewriting System with bound variables and substitutions) constructs a longest reduction starting from t if t is strongly normalizable, and constructs an infinite reduction otherwise. We develop a method for finding the least upper bound of lengths of reductions starting from a strongly normalizable term. We study properties of pure substitutions and several kinds of similarity of redexes. We apply these results to construct an algorithm for finding lengths of longest reductions in 'strongly persistent' OCRSs. As a corollary, we have an algorithm for finding lengths of longest developments in orthogonal CRSs."
Beschreibung:19 S.

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!