Perpetual reductions in orthogonal combinatory reduction systems:
Abstract: "We design a strategy that for any given term t in an Orthogonal Combinatory Reduction System (OCRS) (that is, a Term Rewriting System with bound variables and substitutions) constructs a longest reduction starting from t if t is strongly normalizable, and constructs an infinite reduc...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1993
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS
93,49 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We design a strategy that for any given term t in an Orthogonal Combinatory Reduction System (OCRS) (that is, a Term Rewriting System with bound variables and substitutions) constructs a longest reduction starting from t if t is strongly normalizable, and constructs an infinite reduction otherwise. We develop a method for finding the least upper bound of lengths of reductions starting from a strongly normalizable term. We study properties of pure substitutions and several kinds of similarity of redexes. We apply these results to construct an algorithm for finding lengths of longest reductions in 'strongly persistent' OCRSs. As a corollary, we have an algorithm for finding lengths of longest developments in orthogonal CRSs." |
Beschreibung: | 19 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009034681 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 940227s1993 |||| 00||| eng d | ||
035 | |a (OCoLC)31184837 | ||
035 | |a (DE-599)BVBBV009034681 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Khasidashvili, Zurab |e Verfasser |4 aut | |
245 | 1 | 0 | |a Perpetual reductions in orthogonal combinatory reduction systems |c Z. Khasidashvili |
264 | 1 | |a Amsterdam |c 1993 | |
300 | |a 19 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS |v 93,49 | |
520 | 3 | |a Abstract: "We design a strategy that for any given term t in an Orthogonal Combinatory Reduction System (OCRS) (that is, a Term Rewriting System with bound variables and substitutions) constructs a longest reduction starting from t if t is strongly normalizable, and constructs an infinite reduction otherwise. We develop a method for finding the least upper bound of lengths of reductions starting from a strongly normalizable term. We study properties of pure substitutions and several kinds of similarity of redexes. We apply these results to construct an algorithm for finding lengths of longest reductions in 'strongly persistent' OCRSs. As a corollary, we have an algorithm for finding lengths of longest developments in orthogonal CRSs." | |
650 | 4 | |a Rewriting systems (Computer science) | |
810 | 2 | |a Department of Computer Science: Report CS |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 93,49 |w (DE-604)BV008928356 |9 93,49 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-005977219 |
Datensatz im Suchindex
_version_ | 1804123388129574912 |
---|---|
any_adam_object | |
author | Khasidashvili, Zurab |
author_facet | Khasidashvili, Zurab |
author_role | aut |
author_sort | Khasidashvili, Zurab |
author_variant | z k zk |
building | Verbundindex |
bvnumber | BV009034681 |
ctrlnum | (OCoLC)31184837 (DE-599)BVBBV009034681 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01738nam a2200289 cb4500</leader><controlfield tag="001">BV009034681</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940227s1993 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)31184837</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009034681</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khasidashvili, Zurab</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Perpetual reductions in orthogonal combinatory reduction systems</subfield><subfield code="c">Z. Khasidashvili</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">19 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS</subfield><subfield code="v">93,49</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We design a strategy that for any given term t in an Orthogonal Combinatory Reduction System (OCRS) (that is, a Term Rewriting System with bound variables and substitutions) constructs a longest reduction starting from t if t is strongly normalizable, and constructs an infinite reduction otherwise. We develop a method for finding the least upper bound of lengths of reductions starting from a strongly normalizable term. We study properties of pure substitutions and several kinds of similarity of redexes. We apply these results to construct an algorithm for finding lengths of longest reductions in 'strongly persistent' OCRSs. As a corollary, we have an algorithm for finding lengths of longest developments in orthogonal CRSs."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rewriting systems (Computer science)</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Report CS</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">93,49</subfield><subfield code="w">(DE-604)BV008928356</subfield><subfield code="9">93,49</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005977219</subfield></datafield></record></collection> |
id | DE-604.BV009034681 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:28:58Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005977219 |
oclc_num | 31184837 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | 19 S. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS |
spelling | Khasidashvili, Zurab Verfasser aut Perpetual reductions in orthogonal combinatory reduction systems Z. Khasidashvili Amsterdam 1993 19 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS 93,49 Abstract: "We design a strategy that for any given term t in an Orthogonal Combinatory Reduction System (OCRS) (that is, a Term Rewriting System with bound variables and substitutions) constructs a longest reduction starting from t if t is strongly normalizable, and constructs an infinite reduction otherwise. We develop a method for finding the least upper bound of lengths of reductions starting from a strongly normalizable term. We study properties of pure substitutions and several kinds of similarity of redexes. We apply these results to construct an algorithm for finding lengths of longest reductions in 'strongly persistent' OCRSs. As a corollary, we have an algorithm for finding lengths of longest developments in orthogonal CRSs." Rewriting systems (Computer science) Department of Computer Science: Report CS Centrum voor Wiskunde en Informatica <Amsterdam> 93,49 (DE-604)BV008928356 93,49 |
spellingShingle | Khasidashvili, Zurab Perpetual reductions in orthogonal combinatory reduction systems Rewriting systems (Computer science) |
title | Perpetual reductions in orthogonal combinatory reduction systems |
title_auth | Perpetual reductions in orthogonal combinatory reduction systems |
title_exact_search | Perpetual reductions in orthogonal combinatory reduction systems |
title_full | Perpetual reductions in orthogonal combinatory reduction systems Z. Khasidashvili |
title_fullStr | Perpetual reductions in orthogonal combinatory reduction systems Z. Khasidashvili |
title_full_unstemmed | Perpetual reductions in orthogonal combinatory reduction systems Z. Khasidashvili |
title_short | Perpetual reductions in orthogonal combinatory reduction systems |
title_sort | perpetual reductions in orthogonal combinatory reduction systems |
topic | Rewriting systems (Computer science) |
topic_facet | Rewriting systems (Computer science) |
volume_link | (DE-604)BV008928356 |
work_keys_str_mv | AT khasidashvilizurab perpetualreductionsinorthogonalcombinatoryreductionsystems |