Higher Order Recursive Program Schemes are turing incomplete:
Abstract: "We define Higher Order Recursive Program Schemes (HRPSs) by allowing metasubstitutions (as in the [lambda]-calculus) in right-hand sides of function and quantifier definitions. To study reductions in a HRPS we split it into 'first order part' and 'pure substitution par...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1993
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS
93,48 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We define Higher Order Recursive Program Schemes (HRPSs) by allowing metasubstitutions (as in the [lambda]-calculus) in right-hand sides of function and quantifier definitions. To study reductions in a HRPS we split it into 'first order part' and 'pure substitution part'. A study of pure substitutions and several kinds of similarity of redexes makes it possible to lift properties of (first order) Recursive Program Schemes to the higher order case. The crucial properties are that corresponding arguments of essentially similar redexes are either both essential or both inessential, and that essentially similar redexes create essentially similar redexes The main result is the decidability of weak normalization in HRPSs, which immediately implies that HRPSs do not have full computational power. We analyze the structural properties of HRPSs and introduce several kinds of persistent higher order rewrite systems that enjoy similar properties. For uniformly persistent systems, we design an efficient optimal sequential normalizing strategy. |
Beschreibung: | 17 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009034680 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 940227s1993 |||| 00||| eng d | ||
035 | |a (OCoLC)31184822 | ||
035 | |a (DE-599)BVBBV009034680 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Khasidashvili, Zurab |e Verfasser |4 aut | |
245 | 1 | 0 | |a Higher Order Recursive Program Schemes are turing incomplete |c Z. Khasidashvili |
264 | 1 | |a Amsterdam |c 1993 | |
300 | |a 17 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS |v 93,48 | |
520 | 3 | |a Abstract: "We define Higher Order Recursive Program Schemes (HRPSs) by allowing metasubstitutions (as in the [lambda]-calculus) in right-hand sides of function and quantifier definitions. To study reductions in a HRPS we split it into 'first order part' and 'pure substitution part'. A study of pure substitutions and several kinds of similarity of redexes makes it possible to lift properties of (first order) Recursive Program Schemes to the higher order case. The crucial properties are that corresponding arguments of essentially similar redexes are either both essential or both inessential, and that essentially similar redexes create essentially similar redexes | |
520 | 3 | |a The main result is the decidability of weak normalization in HRPSs, which immediately implies that HRPSs do not have full computational power. We analyze the structural properties of HRPSs and introduce several kinds of persistent higher order rewrite systems that enjoy similar properties. For uniformly persistent systems, we design an efficient optimal sequential normalizing strategy. | |
650 | 4 | |a Recursive programming | |
650 | 4 | |a Rewriting systems (Computer science) | |
810 | 2 | |a Department of Computer Science: Report CS |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 93,48 |w (DE-604)BV008928356 |9 93,48 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-005977218 |
Datensatz im Suchindex
_version_ | 1804123388136914944 |
---|---|
any_adam_object | |
author | Khasidashvili, Zurab |
author_facet | Khasidashvili, Zurab |
author_role | aut |
author_sort | Khasidashvili, Zurab |
author_variant | z k zk |
building | Verbundindex |
bvnumber | BV009034680 |
ctrlnum | (OCoLC)31184822 (DE-599)BVBBV009034680 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02101nam a2200313 cb4500</leader><controlfield tag="001">BV009034680</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940227s1993 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)31184822</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009034680</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khasidashvili, Zurab</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Higher Order Recursive Program Schemes are turing incomplete</subfield><subfield code="c">Z. Khasidashvili</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">17 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS</subfield><subfield code="v">93,48</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We define Higher Order Recursive Program Schemes (HRPSs) by allowing metasubstitutions (as in the [lambda]-calculus) in right-hand sides of function and quantifier definitions. To study reductions in a HRPS we split it into 'first order part' and 'pure substitution part'. A study of pure substitutions and several kinds of similarity of redexes makes it possible to lift properties of (first order) Recursive Program Schemes to the higher order case. The crucial properties are that corresponding arguments of essentially similar redexes are either both essential or both inessential, and that essentially similar redexes create essentially similar redexes</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">The main result is the decidability of weak normalization in HRPSs, which immediately implies that HRPSs do not have full computational power. We analyze the structural properties of HRPSs and introduce several kinds of persistent higher order rewrite systems that enjoy similar properties. For uniformly persistent systems, we design an efficient optimal sequential normalizing strategy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recursive programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rewriting systems (Computer science)</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Report CS</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">93,48</subfield><subfield code="w">(DE-604)BV008928356</subfield><subfield code="9">93,48</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005977218</subfield></datafield></record></collection> |
id | DE-604.BV009034680 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:28:58Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005977218 |
oclc_num | 31184822 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | 17 S. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS |
spelling | Khasidashvili, Zurab Verfasser aut Higher Order Recursive Program Schemes are turing incomplete Z. Khasidashvili Amsterdam 1993 17 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS 93,48 Abstract: "We define Higher Order Recursive Program Schemes (HRPSs) by allowing metasubstitutions (as in the [lambda]-calculus) in right-hand sides of function and quantifier definitions. To study reductions in a HRPS we split it into 'first order part' and 'pure substitution part'. A study of pure substitutions and several kinds of similarity of redexes makes it possible to lift properties of (first order) Recursive Program Schemes to the higher order case. The crucial properties are that corresponding arguments of essentially similar redexes are either both essential or both inessential, and that essentially similar redexes create essentially similar redexes The main result is the decidability of weak normalization in HRPSs, which immediately implies that HRPSs do not have full computational power. We analyze the structural properties of HRPSs and introduce several kinds of persistent higher order rewrite systems that enjoy similar properties. For uniformly persistent systems, we design an efficient optimal sequential normalizing strategy. Recursive programming Rewriting systems (Computer science) Department of Computer Science: Report CS Centrum voor Wiskunde en Informatica <Amsterdam> 93,48 (DE-604)BV008928356 93,48 |
spellingShingle | Khasidashvili, Zurab Higher Order Recursive Program Schemes are turing incomplete Recursive programming Rewriting systems (Computer science) |
title | Higher Order Recursive Program Schemes are turing incomplete |
title_auth | Higher Order Recursive Program Schemes are turing incomplete |
title_exact_search | Higher Order Recursive Program Schemes are turing incomplete |
title_full | Higher Order Recursive Program Schemes are turing incomplete Z. Khasidashvili |
title_fullStr | Higher Order Recursive Program Schemes are turing incomplete Z. Khasidashvili |
title_full_unstemmed | Higher Order Recursive Program Schemes are turing incomplete Z. Khasidashvili |
title_short | Higher Order Recursive Program Schemes are turing incomplete |
title_sort | higher order recursive program schemes are turing incomplete |
topic | Recursive programming Rewriting systems (Computer science) |
topic_facet | Recursive programming Rewriting systems (Computer science) |
volume_link | (DE-604)BV008928356 |
work_keys_str_mv | AT khasidashvilizurab higherorderrecursiveprogramschemesareturingincomplete |