Derandomization through approximation: an NC algorithm for minimum cuts
Abstract: "We prove that the minimum cut problem can be solved in NC on arbitrarily weighted undirected graphs. We do so by giving three separate and independently interesting results. The first is a relatively straightforward NC (2 + [epsilon])-approximation algorithm for the minimum cut. It u...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Stanford, Calif.
1993
|
Schriftenreihe: | Stanford University / Computer Science Department: Report STAN CS
1471 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We prove that the minimum cut problem can be solved in NC on arbitrarily weighted undirected graphs. We do so by giving three separate and independently interesting results. The first is a relatively straightforward NC (2 + [epsilon])-approximation algorithm for the minimum cut. It uses O(m²/n) processors. The second result is a randomized reduction of the minimum cut problem to the minimum cut approximation problem. The third is a derandomization of this reduction. Performing the derandomization requires a novel combination of two previously known derandomization techniques: pairwise independence and random walks on expanders." |
Beschreibung: | 18 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009034282 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 940227s1993 |||| 00||| eng d | ||
035 | |a (OCoLC)30498431 | ||
035 | |a (DE-599)BVBBV009034282 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
050 | 0 | |a QA76.952 | |
100 | 1 | |a Karger, David |e Verfasser |4 aut | |
245 | 1 | 0 | |a Derandomization through approximation |b an NC algorithm for minimum cuts |c by David Karger and Rajeev Motwani |
264 | 1 | |a Stanford, Calif. |c 1993 | |
300 | |a 18 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Stanford University / Computer Science Department: Report STAN CS |v 1471 | |
520 | 3 | |a Abstract: "We prove that the minimum cut problem can be solved in NC on arbitrarily weighted undirected graphs. We do so by giving three separate and independently interesting results. The first is a relatively straightforward NC (2 + [epsilon])-approximation algorithm for the minimum cut. It uses O(m²/n) processors. The second result is a randomized reduction of the minimum cut problem to the minimum cut approximation problem. The third is a derandomization of this reduction. Performing the derandomization requires a novel combination of two previously known derandomization techniques: pairwise independence and random walks on expanders." | |
650 | 4 | |a Random walks (Mathematics) | |
700 | 1 | |a Motwani, Rajeev |d 1962-2009 |e Verfasser |0 (DE-588)124195199 |4 aut | |
810 | 2 | |a Computer Science Department: Report STAN CS |t Stanford University |v 1471 |w (DE-604)BV008928280 |9 1471 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-005976949 |
Datensatz im Suchindex
_version_ | 1804123387713290240 |
---|---|
any_adam_object | |
author | Karger, David Motwani, Rajeev 1962-2009 |
author_GND | (DE-588)124195199 |
author_facet | Karger, David Motwani, Rajeev 1962-2009 |
author_role | aut aut |
author_sort | Karger, David |
author_variant | d k dk r m rm |
building | Verbundindex |
bvnumber | BV009034282 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.952 |
callnumber-search | QA76.952 |
callnumber-sort | QA 276.952 |
callnumber-subject | QA - Mathematics |
ctrlnum | (OCoLC)30498431 (DE-599)BVBBV009034282 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01703nam a2200313 cb4500</leader><controlfield tag="001">BV009034282</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940227s1993 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)30498431</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009034282</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.952</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Karger, David</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Derandomization through approximation</subfield><subfield code="b">an NC algorithm for minimum cuts</subfield><subfield code="c">by David Karger and Rajeev Motwani</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Stanford, Calif.</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">18 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Stanford University / Computer Science Department: Report STAN CS</subfield><subfield code="v">1471</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We prove that the minimum cut problem can be solved in NC on arbitrarily weighted undirected graphs. We do so by giving three separate and independently interesting results. The first is a relatively straightforward NC (2 + [epsilon])-approximation algorithm for the minimum cut. It uses O(m²/n) processors. The second result is a randomized reduction of the minimum cut problem to the minimum cut approximation problem. The third is a derandomization of this reduction. Performing the derandomization requires a novel combination of two previously known derandomization techniques: pairwise independence and random walks on expanders."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random walks (Mathematics)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Motwani, Rajeev</subfield><subfield code="d">1962-2009</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124195199</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Computer Science Department: Report STAN CS</subfield><subfield code="t">Stanford University</subfield><subfield code="v">1471</subfield><subfield code="w">(DE-604)BV008928280</subfield><subfield code="9">1471</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005976949</subfield></datafield></record></collection> |
id | DE-604.BV009034282 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:28:58Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005976949 |
oclc_num | 30498431 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | 18 S. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
record_format | marc |
series2 | Stanford University / Computer Science Department: Report STAN CS |
spelling | Karger, David Verfasser aut Derandomization through approximation an NC algorithm for minimum cuts by David Karger and Rajeev Motwani Stanford, Calif. 1993 18 S. txt rdacontent n rdamedia nc rdacarrier Stanford University / Computer Science Department: Report STAN CS 1471 Abstract: "We prove that the minimum cut problem can be solved in NC on arbitrarily weighted undirected graphs. We do so by giving three separate and independently interesting results. The first is a relatively straightforward NC (2 + [epsilon])-approximation algorithm for the minimum cut. It uses O(m²/n) processors. The second result is a randomized reduction of the minimum cut problem to the minimum cut approximation problem. The third is a derandomization of this reduction. Performing the derandomization requires a novel combination of two previously known derandomization techniques: pairwise independence and random walks on expanders." Random walks (Mathematics) Motwani, Rajeev 1962-2009 Verfasser (DE-588)124195199 aut Computer Science Department: Report STAN CS Stanford University 1471 (DE-604)BV008928280 1471 |
spellingShingle | Karger, David Motwani, Rajeev 1962-2009 Derandomization through approximation an NC algorithm for minimum cuts Random walks (Mathematics) |
title | Derandomization through approximation an NC algorithm for minimum cuts |
title_auth | Derandomization through approximation an NC algorithm for minimum cuts |
title_exact_search | Derandomization through approximation an NC algorithm for minimum cuts |
title_full | Derandomization through approximation an NC algorithm for minimum cuts by David Karger and Rajeev Motwani |
title_fullStr | Derandomization through approximation an NC algorithm for minimum cuts by David Karger and Rajeev Motwani |
title_full_unstemmed | Derandomization through approximation an NC algorithm for minimum cuts by David Karger and Rajeev Motwani |
title_short | Derandomization through approximation |
title_sort | derandomization through approximation an nc algorithm for minimum cuts |
title_sub | an NC algorithm for minimum cuts |
topic | Random walks (Mathematics) |
topic_facet | Random walks (Mathematics) |
volume_link | (DE-604)BV008928280 |
work_keys_str_mv | AT kargerdavid derandomizationthroughapproximationanncalgorithmforminimumcuts AT motwanirajeev derandomizationthroughapproximationanncalgorithmforminimumcuts |