Shintani zeta functions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge Univ. Press
1993
|
Ausgabe: | 1. publ. |
Schriftenreihe: | London Mathematical Society: London Mathematical Society lecture note series
183 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 339 S. |
ISBN: | 0521448042 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009016629 | ||
003 | DE-604 | ||
005 | 19940428 | ||
007 | t | ||
008 | 940303s1993 |||| 00||| eng d | ||
020 | |a 0521448042 |9 0-521-44804-2 | ||
035 | |a (OCoLC)246643462 | ||
035 | |a (DE-599)BVBBV009016629 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-12 |a DE-355 |a DE-739 |a DE-91G |a DE-703 |a DE-11 | ||
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
084 | |a MAT 339f |2 stub | ||
084 | |a MAT 105f |2 stub | ||
100 | 1 | |a Yukie, Akihiko |e Verfasser |4 aut | |
245 | 1 | 0 | |a Shintani zeta functions |c Akihiko Yukie |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge |b Cambridge Univ. Press |c 1993 | |
300 | |a XII, 339 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society: London Mathematical Society lecture note series |v 183 | |
650 | 0 | 7 | |a Zetafunktion |0 (DE-588)4190764-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zetafunktion |0 (DE-588)4190764-4 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a London Mathematical Society: London Mathematical Society lecture note series |v 183 |w (DE-604)BV000000130 |9 183 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005961979&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-005961979 |
Datensatz im Suchindex
_version_ | 1804123366073827328 |
---|---|
adam_text | Table of contents
Preface
Notation
Introduction
§0.1 What is a prehomogeneous vector space?
§0.2 The classification
§0.3 The global zeta function
§0.4 The orbit space Gk Vfcss
§0.5 The filtering process and the local theory: a note by D. Wright
§0.6 The outline of the general procedure
Part I The general theory
Chapter 1 Preliminaries
§1.1 An invariant measure on GL(n)
§1.2 Some adelic analysis
Chapter 2 Eisenstein series on GL(n)
§2.1 The Fourier expansion of automorphic forms on GL(n)
§2.2 The constant terms of Eisenstein series on GL(n)
§2.3 The Whittaker functions
§2.4 The Fourier expansion of Eisenstein series on GL(n)
Chapter 3 The general program
§3.1 The zeta function
§3.2 The Morse stratification
§3.3 The paths
§3.4 Shintani s lemma for GL(n)
§3.5 The general process
§3.6 The passing principle
§3.7 Wright s principle
§3.8 Examples
Part II The Siegel Shintani case
Chapter 4 The zeta function for the space of quadratic forms
§4.1 The space of quadratic forms
§4.2 The case n = 2
§4.3 /3 sequences
§4.4 An inductive formulation
§4.5 Paths in Pi
§4.6 Paths in fp3, p4
§4.7 The cancellations
§4.8 The work of Siegel and Shintani
Part III Preliminaries for the quartic case
Chapter 5 The case G = GL(2) x GL(2), V = Sym2*2 ® k2
§5.1 The space Sym2fc2 ® k2
§5.2 The adjusting term
§5.3 Contributions from 0i,i 3
§5.4 Contributions from £ 2, 4
§5.5 The contribution from V™k
§5.6 The principal part formula
viii Table of Contents
Chapter 6 The case G = GL(2) x GL(1)2, V = Sym2*:2 © k
§6.1 Reducible prehomogeneous vector spaces with two irreducible factors
§6.2 The spaces Syrn2*;2 © k, Sym2k2 © k2
§6.3 The principal part formula
Chapter 7 The case G = GL(2) x GL(1)2, V = Sym2k2 © k2
§7.1 Unstable distributions
§7.2 Contributions from unstable strata
§7.3 The principal part formula
Part IV The quartic case
Chapter 8 Invariant theory of pairs of ternary quadratic forms
§8.1 The space of pairs of ternary quadratic forms
§8.2 The Morse stratification
§8.3 /3 sequences of lengths 2
Chapter 9 Preliminary estimates
§9.1 Distributions associated with paths
§9.2 The smoothed Eisenstein series
Chapter 10 The non constant terms associated with unstable strata
§10.1 The case 0 = (ft)
§10.2 The cases t) = (ft), (fto, fto.i)
§10.3 The cases 0 = (ft), (ft, Am)
§10.4 The case 0 = (ft)
§10.5 The case 0 = (ft)
§10.6 The cases 0 = (ft, ft,2), (ft)
Chapter 11 Unstable distributions
§11.1 Unstable distributions
§11.2 Technical lemmas
Chapter 12 Contributions from unstable strata
§12.1 The case 0 = (ft)
§12.2 The case E = (ft)
§12.3 The case 0 = (ft)
§12.4 The case 0 = (ft)
§12.5 The case 0 = (ft)
§12.6 The case 0 = (ft)
§12.7 The case 0 = (ft)
§12.8 The case 3 = (ft)
§12.9 The case 0 = (ft)
§12.10 The case 0 = (/3W)
Chapter 13 The main theorem
§13.1 The cancellations of distributions
§13.2 The principal part formula
§13.3 Concluding remarks
Bibliography
List of symbols
Index
|
any_adam_object | 1 |
author | Yukie, Akihiko |
author_facet | Yukie, Akihiko |
author_role | aut |
author_sort | Yukie, Akihiko |
author_variant | a y ay |
building | Verbundindex |
bvnumber | BV009016629 |
classification_rvk | SI 320 SK 600 |
classification_tum | MAT 339f MAT 105f |
ctrlnum | (OCoLC)246643462 (DE-599)BVBBV009016629 |
discipline | Mathematik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01514nam a2200385 cb4500</leader><controlfield tag="001">BV009016629</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19940428 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940303s1993 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521448042</subfield><subfield code="9">0-521-44804-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246643462</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009016629</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 339f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 105f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yukie, Akihiko</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Shintani zeta functions</subfield><subfield code="c">Akihiko Yukie</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 339 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society: London Mathematical Society lecture note series</subfield><subfield code="v">183</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zetafunktion</subfield><subfield code="0">(DE-588)4190764-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zetafunktion</subfield><subfield code="0">(DE-588)4190764-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society: London Mathematical Society lecture note series</subfield><subfield code="v">183</subfield><subfield code="w">(DE-604)BV000000130</subfield><subfield code="9">183</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005961979&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005961979</subfield></datafield></record></collection> |
id | DE-604.BV009016629 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:28:37Z |
institution | BVB |
isbn | 0521448042 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005961979 |
oclc_num | 246643462 |
open_access_boolean | |
owner | DE-384 DE-12 DE-355 DE-BY-UBR DE-739 DE-91G DE-BY-TUM DE-703 DE-11 |
owner_facet | DE-384 DE-12 DE-355 DE-BY-UBR DE-739 DE-91G DE-BY-TUM DE-703 DE-11 |
physical | XII, 339 S. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Cambridge Univ. Press |
record_format | marc |
series | London Mathematical Society: London Mathematical Society lecture note series |
series2 | London Mathematical Society: London Mathematical Society lecture note series |
spelling | Yukie, Akihiko Verfasser aut Shintani zeta functions Akihiko Yukie 1. publ. Cambridge Cambridge Univ. Press 1993 XII, 339 S. txt rdacontent n rdamedia nc rdacarrier London Mathematical Society: London Mathematical Society lecture note series 183 Zetafunktion (DE-588)4190764-4 gnd rswk-swf Zetafunktion (DE-588)4190764-4 s DE-604 London Mathematical Society: London Mathematical Society lecture note series 183 (DE-604)BV000000130 183 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005961979&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Yukie, Akihiko Shintani zeta functions London Mathematical Society: London Mathematical Society lecture note series Zetafunktion (DE-588)4190764-4 gnd |
subject_GND | (DE-588)4190764-4 |
title | Shintani zeta functions |
title_auth | Shintani zeta functions |
title_exact_search | Shintani zeta functions |
title_full | Shintani zeta functions Akihiko Yukie |
title_fullStr | Shintani zeta functions Akihiko Yukie |
title_full_unstemmed | Shintani zeta functions Akihiko Yukie |
title_short | Shintani zeta functions |
title_sort | shintani zeta functions |
topic | Zetafunktion (DE-588)4190764-4 gnd |
topic_facet | Zetafunktion |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005961979&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000130 |
work_keys_str_mv | AT yukieakihiko shintanizetafunctions |