Closed G1-continuous cubic Bézier surfaces:
Abstract: "This report first presents an analysis of the sufficient and necessary polynomial degree for several scattered data interpolation problems. The attention is then focussed on the construction of a piecewise triangular cubic Bézier surface that interpolates given triangle vertices with...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1992
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS
92,26 |
Schlagworte: | |
Zusammenfassung: | Abstract: "This report first presents an analysis of the sufficient and necessary polynomial degree for several scattered data interpolation problems. The attention is then focussed on the construction of a piecewise triangular cubic Bézier surface that interpolates given triangle vertices with prescribed normal vectors, and is G¹-continuous everywhere. In order to get enough degrees of freedom to define the Bézier control points, a triangle three-split, a two-split and a six-split scheme are developed. The split into six subtriangles results in a surface that is G¹-continuous as well as visually pleasing." |
Beschreibung: | 20 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009008748 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 940206s1992 |||| 00||| eng d | ||
035 | |a (OCoLC)27670688 | ||
035 | |a (DE-599)BVBBV009008748 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Veltkamp, Remco C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Closed G1-continuous cubic Bézier surfaces |c R. C. Veltkamp |
264 | 1 | |a Amsterdam |c 1992 | |
300 | |a 20 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS |v 92,26 | |
520 | 3 | |a Abstract: "This report first presents an analysis of the sufficient and necessary polynomial degree for several scattered data interpolation problems. The attention is then focussed on the construction of a piecewise triangular cubic Bézier surface that interpolates given triangle vertices with prescribed normal vectors, and is G¹-continuous everywhere. In order to get enough degrees of freedom to define the Bézier control points, a triangle three-split, a two-split and a six-split scheme are developed. The split into six subtriangles results in a surface that is G¹-continuous as well as visually pleasing." | |
650 | 4 | |a Computational geometry | |
810 | 2 | |a Department of Computer Science: Report CS |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 92,26 |w (DE-604)BV008928356 |9 92,26 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-005955235 |
Datensatz im Suchindex
_version_ | 1804123355891105792 |
---|---|
any_adam_object | |
author | Veltkamp, Remco C. |
author_facet | Veltkamp, Remco C. |
author_role | aut |
author_sort | Veltkamp, Remco C. |
author_variant | r c v rc rcv |
building | Verbundindex |
bvnumber | BV009008748 |
ctrlnum | (OCoLC)27670688 (DE-599)BVBBV009008748 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01573nam a2200289 cb4500</leader><controlfield tag="001">BV009008748</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940206s1992 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)27670688</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009008748</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Veltkamp, Remco C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Closed G1-continuous cubic Bézier surfaces</subfield><subfield code="c">R. C. Veltkamp</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">20 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS</subfield><subfield code="v">92,26</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "This report first presents an analysis of the sufficient and necessary polynomial degree for several scattered data interpolation problems. The attention is then focussed on the construction of a piecewise triangular cubic Bézier surface that interpolates given triangle vertices with prescribed normal vectors, and is G¹-continuous everywhere. In order to get enough degrees of freedom to define the Bézier control points, a triangle three-split, a two-split and a six-split scheme are developed. The split into six subtriangles results in a surface that is G¹-continuous as well as visually pleasing."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational geometry</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Report CS</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">92,26</subfield><subfield code="w">(DE-604)BV008928356</subfield><subfield code="9">92,26</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005955235</subfield></datafield></record></collection> |
id | DE-604.BV009008748 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:28:28Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005955235 |
oclc_num | 27670688 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | 20 S. |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS |
spelling | Veltkamp, Remco C. Verfasser aut Closed G1-continuous cubic Bézier surfaces R. C. Veltkamp Amsterdam 1992 20 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS 92,26 Abstract: "This report first presents an analysis of the sufficient and necessary polynomial degree for several scattered data interpolation problems. The attention is then focussed on the construction of a piecewise triangular cubic Bézier surface that interpolates given triangle vertices with prescribed normal vectors, and is G¹-continuous everywhere. In order to get enough degrees of freedom to define the Bézier control points, a triangle three-split, a two-split and a six-split scheme are developed. The split into six subtriangles results in a surface that is G¹-continuous as well as visually pleasing." Computational geometry Department of Computer Science: Report CS Centrum voor Wiskunde en Informatica <Amsterdam> 92,26 (DE-604)BV008928356 92,26 |
spellingShingle | Veltkamp, Remco C. Closed G1-continuous cubic Bézier surfaces Computational geometry |
title | Closed G1-continuous cubic Bézier surfaces |
title_auth | Closed G1-continuous cubic Bézier surfaces |
title_exact_search | Closed G1-continuous cubic Bézier surfaces |
title_full | Closed G1-continuous cubic Bézier surfaces R. C. Veltkamp |
title_fullStr | Closed G1-continuous cubic Bézier surfaces R. C. Veltkamp |
title_full_unstemmed | Closed G1-continuous cubic Bézier surfaces R. C. Veltkamp |
title_short | Closed G1-continuous cubic Bézier surfaces |
title_sort | closed g1 continuous cubic bezier surfaces |
topic | Computational geometry |
topic_facet | Computational geometry |
volume_link | (DE-604)BV008928356 |
work_keys_str_mv | AT veltkampremcoc closedg1continuouscubicbeziersurfaces |