Newton's method for fractional combinatorial optimization:

Abstract: "We consider Newton's method for the linear fractional combinatorial optimization. First we show a strongly polynomial bound on the number of iterations for the general case. Then we consider the transshipment problem when the maximum arc cost is being minimized. This problem can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Radzik, Tomasz (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Stanford, Calif. 1992
Schriftenreihe:Stanford University / Computer Science Department: Report STAN CS 1406
Schlagworte:
Zusammenfassung:Abstract: "We consider Newton's method for the linear fractional combinatorial optimization. First we show a strongly polynomial bound on the number of iterations for the general case. Then we consider the transshipment problem when the maximum arc cost is being minimized. This problem can be reduced to the maximum mean-weight cut problem, which is a special case of the linear fractional combinatorial optimization. We prove that Newton's method runs in O(m) iterations for the maximum mean-weight cut problem. One iteration is dominated by the maximum flow computation, so the overall running time is Õ(m²n). The previous fastest algorithm is based on Meggido's parametric search method and runs in Õ(n³m) time."
Beschreibung:20 S.

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!