Normal forms in real time process algebra:
Abstract: "This paper is based on the extension of Basic Process Algebra with real time that has been defined in [Klu91]. The theory of this extension, called BPA[rho delta]I, contains an axiom that can only be verified by an uncountable number of checkings. So at first sight equality between p...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1991
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS
91,49 |
Schlagworte: | |
Zusammenfassung: | Abstract: "This paper is based on the extension of Basic Process Algebra with real time that has been defined in [Klu91]. The theory of this extension, called BPA[rho delta]I, contains an axiom that can only be verified by an uncountable number of checkings. So at first sight equality between process terms is undecidable. In this paper an explicit construction is given for reducing process terms to a normal form. Furthermore, we prove that if BPA[rho delta]I [symbol] p = q, then p and q have the same normal form. Thus it is decidable for two process terms if they are equal or not." |
Beschreibung: | 22 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV008993167 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 940206s1991 d||| |||| 00||| eng d | ||
035 | |a (OCoLC)27471567 | ||
035 | |a (DE-599)BVBBV008993167 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Fokkink, Willem J. |d 1965- |e Verfasser |0 (DE-588)121536831 |4 aut | |
245 | 1 | 0 | |a Normal forms in real time process algebra |c W. J. Fokkink |
264 | 1 | |a Amsterdam |c 1991 | |
300 | |a 22 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS |v 91,49 | |
520 | 3 | |a Abstract: "This paper is based on the extension of Basic Process Algebra with real time that has been defined in [Klu91]. The theory of this extension, called BPA[rho delta]I, contains an axiom that can only be verified by an uncountable number of checkings. So at first sight equality between process terms is undecidable. In this paper an explicit construction is given for reducing process terms to a normal form. Furthermore, we prove that if BPA[rho delta]I [symbol] p = q, then p and q have the same normal form. Thus it is decidable for two process terms if they are equal or not." | |
650 | 4 | |a Algebra | |
650 | 4 | |a Real-time data processing | |
810 | 2 | |a Department of Computer Science: Report CS |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 91,49 |w (DE-604)BV008928356 |9 91,49 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-005941990 |
Datensatz im Suchindex
_version_ | 1804123335649394688 |
---|---|
any_adam_object | |
author | Fokkink, Willem J. 1965- |
author_GND | (DE-588)121536831 |
author_facet | Fokkink, Willem J. 1965- |
author_role | aut |
author_sort | Fokkink, Willem J. 1965- |
author_variant | w j f wj wjf |
building | Verbundindex |
bvnumber | BV008993167 |
ctrlnum | (OCoLC)27471567 (DE-599)BVBBV008993167 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01608nam a2200301 cb4500</leader><controlfield tag="001">BV008993167</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940206s1991 d||| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)27471567</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV008993167</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fokkink, Willem J.</subfield><subfield code="d">1965-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121536831</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Normal forms in real time process algebra</subfield><subfield code="c">W. J. Fokkink</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">22 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS</subfield><subfield code="v">91,49</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "This paper is based on the extension of Basic Process Algebra with real time that has been defined in [Klu91]. The theory of this extension, called BPA[rho delta]I, contains an axiom that can only be verified by an uncountable number of checkings. So at first sight equality between process terms is undecidable. In this paper an explicit construction is given for reducing process terms to a normal form. Furthermore, we prove that if BPA[rho delta]I [symbol] p = q, then p and q have the same normal form. Thus it is decidable for two process terms if they are equal or not."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real-time data processing</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Report CS</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">91,49</subfield><subfield code="w">(DE-604)BV008928356</subfield><subfield code="9">91,49</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005941990</subfield></datafield></record></collection> |
id | DE-604.BV008993167 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:28:08Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005941990 |
oclc_num | 27471567 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | 22 S. graph. Darst. |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS |
spelling | Fokkink, Willem J. 1965- Verfasser (DE-588)121536831 aut Normal forms in real time process algebra W. J. Fokkink Amsterdam 1991 22 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS 91,49 Abstract: "This paper is based on the extension of Basic Process Algebra with real time that has been defined in [Klu91]. The theory of this extension, called BPA[rho delta]I, contains an axiom that can only be verified by an uncountable number of checkings. So at first sight equality between process terms is undecidable. In this paper an explicit construction is given for reducing process terms to a normal form. Furthermore, we prove that if BPA[rho delta]I [symbol] p = q, then p and q have the same normal form. Thus it is decidable for two process terms if they are equal or not." Algebra Real-time data processing Department of Computer Science: Report CS Centrum voor Wiskunde en Informatica <Amsterdam> 91,49 (DE-604)BV008928356 91,49 |
spellingShingle | Fokkink, Willem J. 1965- Normal forms in real time process algebra Algebra Real-time data processing |
title | Normal forms in real time process algebra |
title_auth | Normal forms in real time process algebra |
title_exact_search | Normal forms in real time process algebra |
title_full | Normal forms in real time process algebra W. J. Fokkink |
title_fullStr | Normal forms in real time process algebra W. J. Fokkink |
title_full_unstemmed | Normal forms in real time process algebra W. J. Fokkink |
title_short | Normal forms in real time process algebra |
title_sort | normal forms in real time process algebra |
topic | Algebra Real-time data processing |
topic_facet | Algebra Real-time data processing |
volume_link | (DE-604)BV008928356 |
work_keys_str_mv | AT fokkinkwillemj normalformsinrealtimeprocessalgebra |