Datatype laws without signatures:
Abstract: "Using the categorical notion of 'functor' one may define the notion of data type (algebra) without being forced to introduce a signature, i.e., names for the individual sorts (types) and operations involved. This has proved to be advantageous for those theory developments w...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1991
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS
91,33 |
Schlagworte: | |
Zusammenfassung: | Abstract: "Using the categorical notion of 'functor' one may define the notion of data type (algebra) without being forced to introduce a signature, i.e., names for the individual sorts (types) and operations involved. This has proved to be advantageous for those theory developments where one is not interested in the syntactic appearance of an algebra. We present a categorical formalisation of the notion of 'law' for data types, that has the same property: no signature is needed. Thus we are able to prove some general theorems in quite a simple way." |
Beschreibung: | 31 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV008993159 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 940206s1991 |||| 00||| eng d | ||
035 | |a (OCoLC)26365278 | ||
035 | |a (DE-599)BVBBV008993159 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Fokkinga, Maarten M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Datatype laws without signatures |c M. M. Fokkinga |
264 | 1 | |a Amsterdam |c 1991 | |
300 | |a 31 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS |v 91,33 | |
520 | 3 | |a Abstract: "Using the categorical notion of 'functor' one may define the notion of data type (algebra) without being forced to introduce a signature, i.e., names for the individual sorts (types) and operations involved. This has proved to be advantageous for those theory developments where one is not interested in the syntactic appearance of an algebra. We present a categorical formalisation of the notion of 'law' for data types, that has the same property: no signature is needed. Thus we are able to prove some general theorems in quite a simple way." | |
650 | 4 | |a Abstract data types (Computer science) | |
810 | 2 | |a Department of Computer Science: Report CS |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 91,33 |w (DE-604)BV008928356 |9 91,33 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-005941982 |
Datensatz im Suchindex
_version_ | 1804123335656734720 |
---|---|
any_adam_object | |
author | Fokkinga, Maarten M. |
author_facet | Fokkinga, Maarten M. |
author_role | aut |
author_sort | Fokkinga, Maarten M. |
author_variant | m m f mm mmf |
building | Verbundindex |
bvnumber | BV008993159 |
ctrlnum | (OCoLC)26365278 (DE-599)BVBBV008993159 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01518nam a2200289 cb4500</leader><controlfield tag="001">BV008993159</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940206s1991 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)26365278</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV008993159</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fokkinga, Maarten M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Datatype laws without signatures</subfield><subfield code="c">M. M. Fokkinga</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">31 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS</subfield><subfield code="v">91,33</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "Using the categorical notion of 'functor' one may define the notion of data type (algebra) without being forced to introduce a signature, i.e., names for the individual sorts (types) and operations involved. This has proved to be advantageous for those theory developments where one is not interested in the syntactic appearance of an algebra. We present a categorical formalisation of the notion of 'law' for data types, that has the same property: no signature is needed. Thus we are able to prove some general theorems in quite a simple way."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abstract data types (Computer science)</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Report CS</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">91,33</subfield><subfield code="w">(DE-604)BV008928356</subfield><subfield code="9">91,33</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005941982</subfield></datafield></record></collection> |
id | DE-604.BV008993159 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:28:08Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005941982 |
oclc_num | 26365278 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | 31 S. |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS |
spelling | Fokkinga, Maarten M. Verfasser aut Datatype laws without signatures M. M. Fokkinga Amsterdam 1991 31 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS 91,33 Abstract: "Using the categorical notion of 'functor' one may define the notion of data type (algebra) without being forced to introduce a signature, i.e., names for the individual sorts (types) and operations involved. This has proved to be advantageous for those theory developments where one is not interested in the syntactic appearance of an algebra. We present a categorical formalisation of the notion of 'law' for data types, that has the same property: no signature is needed. Thus we are able to prove some general theorems in quite a simple way." Abstract data types (Computer science) Department of Computer Science: Report CS Centrum voor Wiskunde en Informatica <Amsterdam> 91,33 (DE-604)BV008928356 91,33 |
spellingShingle | Fokkinga, Maarten M. Datatype laws without signatures Abstract data types (Computer science) |
title | Datatype laws without signatures |
title_auth | Datatype laws without signatures |
title_exact_search | Datatype laws without signatures |
title_full | Datatype laws without signatures M. M. Fokkinga |
title_fullStr | Datatype laws without signatures M. M. Fokkinga |
title_full_unstemmed | Datatype laws without signatures M. M. Fokkinga |
title_short | Datatype laws without signatures |
title_sort | datatype laws without signatures |
topic | Abstract data types (Computer science) |
topic_facet | Abstract data types (Computer science) |
volume_link | (DE-604)BV008928356 |
work_keys_str_mv | AT fokkingamaartenm datatypelawswithoutsignatures |