Domain decomposition for parallel row projection algorithms:
Abstract: "Row projection algorithms for solving nonsymmetric linear systems are theoretically robust, converging for systems with indefinite symmetric parts and arbitrarily distributed eigenvalues. Slow convergence, however, has prevented their widespread use. This paper shows that a domain de...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Urbana, Ill.
1990
|
Schriftenreihe: | Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report
958 |
Schlagworte: | |
Zusammenfassung: | Abstract: "Row projection algorithms for solving nonsymmetric linear systems are theoretically robust, converging for systems with indefinite symmetric parts and arbitrarily distributed eigenvalues. Slow convergence, however, has prevented their widespread use. This paper shows that a domain decomposition approach gives row projections methods that allow parallelism in the computations. The level of concurrency and size of the created subtasks can be chosen to suit the target machine, and the resulting algorithms have advantages over standard domain decomposition methods." |
Beschreibung: | 13 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV008949940 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 940206s1990 d||| |||| 00||| eng d | ||
035 | |a (OCoLC)22145271 | ||
035 | |a (DE-599)BVBBV008949940 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Bramley, Randy |e Verfasser |4 aut | |
245 | 1 | 0 | |a Domain decomposition for parallel row projection algorithms |c R. Bramley and A. Sameh |
264 | 1 | |a Urbana, Ill. |c 1990 | |
300 | |a 13 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report |v 958 | |
520 | 3 | |a Abstract: "Row projection algorithms for solving nonsymmetric linear systems are theoretically robust, converging for systems with indefinite symmetric parts and arbitrarily distributed eigenvalues. Slow convergence, however, has prevented their widespread use. This paper shows that a domain decomposition approach gives row projections methods that allow parallelism in the computations. The level of concurrency and size of the created subtasks can be chosen to suit the target machine, and the resulting algorithms have advantages over standard domain decomposition methods." | |
650 | 4 | |a Eigenvalues | |
650 | 4 | |a Linear systems | |
700 | 1 | |a Sameh, Ahmed |e Verfasser |4 aut | |
830 | 0 | |a Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report |v 958 |w (DE-604)BV008930033 |9 958 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-005905551 |
Datensatz im Suchindex
_version_ | 1804123283151388672 |
---|---|
any_adam_object | |
author | Bramley, Randy Sameh, Ahmed |
author_facet | Bramley, Randy Sameh, Ahmed |
author_role | aut aut |
author_sort | Bramley, Randy |
author_variant | r b rb a s as |
building | Verbundindex |
bvnumber | BV008949940 |
ctrlnum | (OCoLC)22145271 (DE-599)BVBBV008949940 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01605nam a2200313 cb4500</leader><controlfield tag="001">BV008949940</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940206s1990 d||| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)22145271</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV008949940</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bramley, Randy</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Domain decomposition for parallel row projection algorithms</subfield><subfield code="c">R. Bramley and A. Sameh</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Urbana, Ill.</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report</subfield><subfield code="v">958</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "Row projection algorithms for solving nonsymmetric linear systems are theoretically robust, converging for systems with indefinite symmetric parts and arbitrarily distributed eigenvalues. Slow convergence, however, has prevented their widespread use. This paper shows that a domain decomposition approach gives row projections methods that allow parallelism in the computations. The level of concurrency and size of the created subtasks can be chosen to suit the target machine, and the resulting algorithms have advantages over standard domain decomposition methods."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eigenvalues</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear systems</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sameh, Ahmed</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report</subfield><subfield code="v">958</subfield><subfield code="w">(DE-604)BV008930033</subfield><subfield code="9">958</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005905551</subfield></datafield></record></collection> |
id | DE-604.BV008949940 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:27:18Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005905551 |
oclc_num | 22145271 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | 13 S. graph. Darst. |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
record_format | marc |
series | Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report |
series2 | Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report |
spelling | Bramley, Randy Verfasser aut Domain decomposition for parallel row projection algorithms R. Bramley and A. Sameh Urbana, Ill. 1990 13 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report 958 Abstract: "Row projection algorithms for solving nonsymmetric linear systems are theoretically robust, converging for systems with indefinite symmetric parts and arbitrarily distributed eigenvalues. Slow convergence, however, has prevented their widespread use. This paper shows that a domain decomposition approach gives row projections methods that allow parallelism in the computations. The level of concurrency and size of the created subtasks can be chosen to suit the target machine, and the resulting algorithms have advantages over standard domain decomposition methods." Eigenvalues Linear systems Sameh, Ahmed Verfasser aut Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report 958 (DE-604)BV008930033 958 |
spellingShingle | Bramley, Randy Sameh, Ahmed Domain decomposition for parallel row projection algorithms Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report Eigenvalues Linear systems |
title | Domain decomposition for parallel row projection algorithms |
title_auth | Domain decomposition for parallel row projection algorithms |
title_exact_search | Domain decomposition for parallel row projection algorithms |
title_full | Domain decomposition for parallel row projection algorithms R. Bramley and A. Sameh |
title_fullStr | Domain decomposition for parallel row projection algorithms R. Bramley and A. Sameh |
title_full_unstemmed | Domain decomposition for parallel row projection algorithms R. Bramley and A. Sameh |
title_short | Domain decomposition for parallel row projection algorithms |
title_sort | domain decomposition for parallel row projection algorithms |
topic | Eigenvalues Linear systems |
topic_facet | Eigenvalues Linear systems |
volume_link | (DE-604)BV008930033 |
work_keys_str_mv | AT bramleyrandy domaindecompositionforparallelrowprojectionalgorithms AT samehahmed domaindecompositionforparallelrowprojectionalgorithms |