A parallel method for fast and practical high-order Newton interpolation:
Abstract: "We present parallel algorithms for the computation and evaluation of interpolating polynomials. The algorithms use parallel prefix techniques for the calculations of divided differences in the Newton representation of the interpolating polynomial. For n + 1 given input pairs, the pro...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Urbana, Ill.
1989
|
Schriftenreihe: | Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report
921 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We present parallel algorithms for the computation and evaluation of interpolating polynomials. The algorithms use parallel prefix techniques for the calculations of divided differences in the Newton representation of the interpolating polynomial. For n + 1 given input pairs, the proposed interpolation algorithm requires only 2[log(n+1)]+2 parallel arithmetic steps and circuit size O(n p2 s), reducing the best known circuit size for parallel interpolation by a factor of log n. The algorithm for the computation of the divided differences is shown to be numerically stable and does not require equidistant points, precomputation, or the fast Fourier transform We report on numerical experiments comparing this with other serial and parallel algorithms. The experiments indicate that the method can be very useful for very high-order interpolation, which is made possible for special sets of interpolation nodes. |
Beschreibung: | 22 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV008949507 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 940206s1989 |||| 00||| eng d | ||
035 | |a (OCoLC)22466789 | ||
035 | |a (DE-599)BVBBV008949507 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Egecioglu, Omer |e Verfasser |4 aut | |
245 | 1 | 0 | |a A parallel method for fast and practical high-order Newton interpolation |c O. Egecioglu, E. Gallopoulos and C. Koc |
264 | 1 | |a Urbana, Ill. |c 1989 | |
300 | |a 22 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report |v 921 | |
520 | 3 | |a Abstract: "We present parallel algorithms for the computation and evaluation of interpolating polynomials. The algorithms use parallel prefix techniques for the calculations of divided differences in the Newton representation of the interpolating polynomial. For n + 1 given input pairs, the proposed interpolation algorithm requires only 2[log(n+1)]+2 parallel arithmetic steps and circuit size O(n p2 s), reducing the best known circuit size for parallel interpolation by a factor of log n. The algorithm for the computation of the divided differences is shown to be numerically stable and does not require equidistant points, precomputation, or the fast Fourier transform | |
520 | 3 | |a We report on numerical experiments comparing this with other serial and parallel algorithms. The experiments indicate that the method can be very useful for very high-order interpolation, which is made possible for special sets of interpolation nodes. | |
650 | 4 | |a Interpolation | |
650 | 4 | |a Parallel processing (Electronic computers) | |
700 | 1 | |a Gallopoulos, Efstratios |e Verfasser |4 aut | |
700 | 1 | |a Koç, Çetin Kaya |d 1957- |e Verfasser |0 (DE-588)121427536 |4 aut | |
830 | 0 | |a Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report |v 921 |w (DE-604)BV008930033 |9 921 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-005905164 |
Datensatz im Suchindex
_version_ | 1804123282634440704 |
---|---|
any_adam_object | |
author | Egecioglu, Omer Gallopoulos, Efstratios Koç, Çetin Kaya 1957- |
author_GND | (DE-588)121427536 |
author_facet | Egecioglu, Omer Gallopoulos, Efstratios Koç, Çetin Kaya 1957- |
author_role | aut aut aut |
author_sort | Egecioglu, Omer |
author_variant | o e oe e g eg ç k k çk çkk |
building | Verbundindex |
bvnumber | BV008949507 |
ctrlnum | (OCoLC)22466789 (DE-599)BVBBV008949507 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02104nam a2200337 cb4500</leader><controlfield tag="001">BV008949507</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940206s1989 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)22466789</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV008949507</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Egecioglu, Omer</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A parallel method for fast and practical high-order Newton interpolation</subfield><subfield code="c">O. Egecioglu, E. Gallopoulos and C. Koc</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Urbana, Ill.</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">22 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report</subfield><subfield code="v">921</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We present parallel algorithms for the computation and evaluation of interpolating polynomials. The algorithms use parallel prefix techniques for the calculations of divided differences in the Newton representation of the interpolating polynomial. For n + 1 given input pairs, the proposed interpolation algorithm requires only 2[log(n+1)]+2 parallel arithmetic steps and circuit size O(n p2 s), reducing the best known circuit size for parallel interpolation by a factor of log n. The algorithm for the computation of the divided differences is shown to be numerically stable and does not require equidistant points, precomputation, or the fast Fourier transform</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">We report on numerical experiments comparing this with other serial and parallel algorithms. The experiments indicate that the method can be very useful for very high-order interpolation, which is made possible for special sets of interpolation nodes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parallel processing (Electronic computers)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gallopoulos, Efstratios</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koç, Çetin Kaya</subfield><subfield code="d">1957-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121427536</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report</subfield><subfield code="v">921</subfield><subfield code="w">(DE-604)BV008930033</subfield><subfield code="9">921</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005905164</subfield></datafield></record></collection> |
id | DE-604.BV008949507 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:27:18Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005905164 |
oclc_num | 22466789 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | 22 S. |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
record_format | marc |
series | Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report |
series2 | Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report |
spelling | Egecioglu, Omer Verfasser aut A parallel method for fast and practical high-order Newton interpolation O. Egecioglu, E. Gallopoulos and C. Koc Urbana, Ill. 1989 22 S. txt rdacontent n rdamedia nc rdacarrier Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report 921 Abstract: "We present parallel algorithms for the computation and evaluation of interpolating polynomials. The algorithms use parallel prefix techniques for the calculations of divided differences in the Newton representation of the interpolating polynomial. For n + 1 given input pairs, the proposed interpolation algorithm requires only 2[log(n+1)]+2 parallel arithmetic steps and circuit size O(n p2 s), reducing the best known circuit size for parallel interpolation by a factor of log n. The algorithm for the computation of the divided differences is shown to be numerically stable and does not require equidistant points, precomputation, or the fast Fourier transform We report on numerical experiments comparing this with other serial and parallel algorithms. The experiments indicate that the method can be very useful for very high-order interpolation, which is made possible for special sets of interpolation nodes. Interpolation Parallel processing (Electronic computers) Gallopoulos, Efstratios Verfasser aut Koç, Çetin Kaya 1957- Verfasser (DE-588)121427536 aut Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report 921 (DE-604)BV008930033 921 |
spellingShingle | Egecioglu, Omer Gallopoulos, Efstratios Koç, Çetin Kaya 1957- A parallel method for fast and practical high-order Newton interpolation Center for Supercomputing Research and Development <Urbana, Ill.>: CSRD report Interpolation Parallel processing (Electronic computers) |
title | A parallel method for fast and practical high-order Newton interpolation |
title_auth | A parallel method for fast and practical high-order Newton interpolation |
title_exact_search | A parallel method for fast and practical high-order Newton interpolation |
title_full | A parallel method for fast and practical high-order Newton interpolation O. Egecioglu, E. Gallopoulos and C. Koc |
title_fullStr | A parallel method for fast and practical high-order Newton interpolation O. Egecioglu, E. Gallopoulos and C. Koc |
title_full_unstemmed | A parallel method for fast and practical high-order Newton interpolation O. Egecioglu, E. Gallopoulos and C. Koc |
title_short | A parallel method for fast and practical high-order Newton interpolation |
title_sort | a parallel method for fast and practical high order newton interpolation |
topic | Interpolation Parallel processing (Electronic computers) |
topic_facet | Interpolation Parallel processing (Electronic computers) |
volume_link | (DE-604)BV008930033 |
work_keys_str_mv | AT egeciogluomer aparallelmethodforfastandpracticalhighordernewtoninterpolation AT gallopoulosefstratios aparallelmethodforfastandpracticalhighordernewtoninterpolation AT koccetinkaya aparallelmethodforfastandpracticalhighordernewtoninterpolation |