How to approximate the naive comprehension scheme inside of classical logic:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Bonn
Mathematischen Institut der Universität Bonn
1988
|
Schriftenreihe: | Bonner mathematische Schriften
Nr. 194 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 68 Seiten |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV008947741 | ||
003 | DE-604 | ||
005 | 20240116 | ||
007 | t | ||
008 | 940206s1988 m||| 00||| eng d | ||
035 | |a (OCoLC)19990751 | ||
035 | |a (DE-599)BVBBV008947741 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-384 |a DE-703 |a DE-355 |a DE-706 |a DE-12 |a DE-19 |a DE-91G |a DE-20 |a DE-83 |a DE-11 | ||
050 | 0 | |a QA1 | |
084 | |a SI 180 |0 (DE-625)143093: |2 rvk | ||
100 | 1 | |a Weydert, Emil |4 aut | |
245 | 1 | 0 | |a How to approximate the naive comprehension scheme inside of classical logic |c von Emil Weydert |
264 | 1 | |a Bonn |b Mathematischen Institut der Universität Bonn |c 1988 | |
300 | |a 68 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Bonner mathematische Schriften |v Nr. 194 | |
502 | |b Dissertation |c Bonn Universität |d 1988 | ||
650 | 4 | |a Axiomatic set theory | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Bonner mathematische Schriften |v Nr. 194 |w (DE-604)BV000001610 |9 194 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005903618&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-005903618 |
Datensatz im Suchindex
_version_ | 1804123280441868288 |
---|---|
adam_text | TABLE OF CONTENTS
0 PROLOGUE 1
1 TOPOLOG1CAL SET THEORr 4
0) Introduction 4
1) Topological universes 6
2) Maximality and compactness 12
3) Generalized positive comprehension 20
4) Towards perfect universes 24
5) Canonical models 33
J2 STRATIFIED SET THEORY 41
0! Introduction 41
1) New foundations 42
2) New strong boolean set theories 47
III MONOTONE SET THEORY 52
0) Introduction 51
1) The Monotony Property 52
2) The linear Models 54
3) The limits of positive comprehension 58
IV) CLASSIFICATION THEORY 59
0) Introduction 59
1) Regular scales 61
2) The central scale 62
3) The central characteristic 63
V( B1BL106RAPHV 68
|
any_adam_object | 1 |
author | Weydert, Emil |
author_facet | Weydert, Emil |
author_role | aut |
author_sort | Weydert, Emil |
author_variant | e w ew |
building | Verbundindex |
bvnumber | BV008947741 |
callnumber-first | Q - Science |
callnumber-label | QA1 |
callnumber-raw | QA1 |
callnumber-search | QA1 |
callnumber-sort | QA 11 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 180 |
ctrlnum | (OCoLC)19990751 (DE-599)BVBBV008947741 |
discipline | Mathematik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01580nam a2200385 cb4500</leader><controlfield tag="001">BV008947741</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240116 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940206s1988 m||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)19990751</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV008947741</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 180</subfield><subfield code="0">(DE-625)143093:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Weydert, Emil</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">How to approximate the naive comprehension scheme inside of classical logic</subfield><subfield code="c">von Emil Weydert</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Bonn</subfield><subfield code="b">Mathematischen Institut der Universität Bonn</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">68 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Bonner mathematische Schriften</subfield><subfield code="v">Nr. 194</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Bonn Universität</subfield><subfield code="d">1988</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Axiomatic set theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Bonner mathematische Schriften</subfield><subfield code="v">Nr. 194</subfield><subfield code="w">(DE-604)BV000001610</subfield><subfield code="9">194</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005903618&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005903618</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV008947741 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:27:16Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005903618 |
oclc_num | 19990751 |
open_access_boolean | |
owner | DE-29T DE-384 DE-703 DE-355 DE-BY-UBR DE-706 DE-12 DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-20 DE-83 DE-11 |
owner_facet | DE-29T DE-384 DE-703 DE-355 DE-BY-UBR DE-706 DE-12 DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-20 DE-83 DE-11 |
physical | 68 Seiten |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Mathematischen Institut der Universität Bonn |
record_format | marc |
series | Bonner mathematische Schriften |
series2 | Bonner mathematische Schriften |
spelling | Weydert, Emil aut How to approximate the naive comprehension scheme inside of classical logic von Emil Weydert Bonn Mathematischen Institut der Universität Bonn 1988 68 Seiten txt rdacontent n rdamedia nc rdacarrier Bonner mathematische Schriften Nr. 194 Dissertation Bonn Universität 1988 Axiomatic set theory Logic, Symbolic and mathematical Mathematische Logik (DE-588)4037951-6 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Mathematische Logik (DE-588)4037951-6 s DE-604 Bonner mathematische Schriften Nr. 194 (DE-604)BV000001610 194 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005903618&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Weydert, Emil How to approximate the naive comprehension scheme inside of classical logic Bonner mathematische Schriften Axiomatic set theory Logic, Symbolic and mathematical Mathematische Logik (DE-588)4037951-6 gnd |
subject_GND | (DE-588)4037951-6 (DE-588)4113937-9 |
title | How to approximate the naive comprehension scheme inside of classical logic |
title_auth | How to approximate the naive comprehension scheme inside of classical logic |
title_exact_search | How to approximate the naive comprehension scheme inside of classical logic |
title_full | How to approximate the naive comprehension scheme inside of classical logic von Emil Weydert |
title_fullStr | How to approximate the naive comprehension scheme inside of classical logic von Emil Weydert |
title_full_unstemmed | How to approximate the naive comprehension scheme inside of classical logic von Emil Weydert |
title_short | How to approximate the naive comprehension scheme inside of classical logic |
title_sort | how to approximate the naive comprehension scheme inside of classical logic |
topic | Axiomatic set theory Logic, Symbolic and mathematical Mathematische Logik (DE-588)4037951-6 gnd |
topic_facet | Axiomatic set theory Logic, Symbolic and mathematical Mathematische Logik Hochschulschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005903618&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000001610 |
work_keys_str_mv | AT weydertemil howtoapproximatethenaivecomprehensionschemeinsideofclassicallogic |