The logic of partial information:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin u.a.
Springer
1995
|
Schriftenreihe: | Monographs on theoretical computer science
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXV, 715 S. |
ISBN: | 3540565833 0387565833 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV008865857 | ||
003 | DE-604 | ||
005 | 19950925 | ||
007 | t | ||
008 | 940124s1995 gw |||| 00||| eng d | ||
016 | 7 | |a 940160978 |2 DE-101 | |
020 | |a 3540565833 |9 3-540-56583-3 | ||
020 | |a 0387565833 |9 0-387-56583-3 | ||
035 | |a (OCoLC)29598273 | ||
035 | |a (DE-599)BVBBV008865857 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-91 |a DE-91G |a DE-384 |a DE-473 |a DE-19 |a DE-29T |a DE-739 |a DE-706 |a DE-83 |a DE-188 | ||
050 | 0 | |a QA76.7 | |
082 | 0 | |a 006.3/3 |2 20 | |
084 | |a ST 125 |0 (DE-625)143586: |2 rvk | ||
084 | |a ST 130 |0 (DE-625)143588: |2 rvk | ||
084 | |a DAT 773f |2 stub | ||
084 | |a DAT 540f |2 stub | ||
100 | 1 | |a Nait Abdallah, Areski |d 1950- |e Verfasser |0 (DE-588)1125149140 |4 aut | |
245 | 1 | 0 | |a The logic of partial information |c Areski Nait Abdallah |
264 | 1 | |a Berlin u.a. |b Springer |c 1995 | |
300 | |a XXV, 715 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Monographs on theoretical computer science | |
650 | 4 | |a Algorithmes | |
650 | 7 | |a Automatische bewijsvoering |2 gtt | |
650 | 7 | |a Calcul propositionnel |2 ram | |
650 | 7 | |a Cognitive semantics |2 gtt | |
650 | 7 | |a Formele talen |2 gtt | |
650 | 7 | |a Inteligencia artificial (computacao) |2 larpcal | |
650 | 7 | |a Kennisrepresentatie |2 gtt | |
650 | 4 | |a Langages de programmation - Sémantique | |
650 | 4 | |a Logique symbolique et mathématique | |
650 | 7 | |a Logique symbolique et mathématique |2 ram | |
650 | 7 | |a Logisch programmeren |2 gtt | |
650 | 7 | |a Programmeertalen |2 gtt | |
650 | 7 | |a Raisonnement |2 ram | |
650 | 7 | |a information partielle |2 inriac | |
650 | 7 | |a logique 1er ordre |2 inriac | |
650 | 7 | |a logique non monotone |2 inriac | |
650 | 7 | |a logique propositionnelle partielle |2 inriac | |
650 | 7 | |a raisonnement |2 inriac | |
650 | 7 | |a système logique |2 inriac | |
650 | 7 | |a théorie démonstration |2 inriac | |
650 | 4 | |a Computer algorithms | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Programming languages (Electronic computers) |x Semantics | |
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Information |0 (DE-588)4232570-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Logischer Schluss |0 (DE-588)4139983-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partielle Information |0 (DE-588)4232570-5 |D s |
689 | 0 | 1 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Partielle Information |0 (DE-588)4232570-5 |D s |
689 | 1 | 1 | |a Logischer Schluss |0 (DE-588)4139983-3 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Partielle Information |0 (DE-588)4232570-5 |D s |
689 | 2 | |5 DE-604 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005864263&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-005864263 |
Datensatz im Suchindex
_version_ | 1807684121049169920 |
---|---|
adam_text |
TABLE
OF
CONTENTS
1
INTRODUCTION
.
1
1.1
INTRODUCTION
.
.
.
.
1
1.1.1
THE
LOGIC
OF
NON-MONOTONIC
REASONING
.
3
1.1.1.1
PRACTICAL
PROBLEMS
.
5
1.1.1.2
THEORETICAL
PROBLEMS
.
7
1.1.2
CHANGING
PARADIGMS:
THE
LOGIC
OF
REASONING
WITH
PARTIAL
INFORMATION
.
9
1.2
PRINCIPLES
OF
OUR
APPROACH
.
12
1.2.1
THE
SEPARATION
BETWEEN
HARD
KNOWLEDGE,
JUSTIFICATION
KNOWLEDGE
AND
TENTATIVE
KNOWLEDGE
.
14
1.2.2
PARTIAL
INFORMATION
AND
PARTIAL
MODELS
.
16
1.3
CONCLUSION
.
20
2
PARTIAL
PROPOSITIONAL
LOGIC
.
21
2.1
SYNTAX
AND
SEMANTICS
OF
PARTIAL
PROPOSITIONAL
LOGIC
.
21
2.1.1
SYNTAX
OF
(PARTIAL)
PROPOSITIONAL
LOGIC
.
21
2.1.2
SEMANTICS
OF
PARTIAL
PROPOSITIONAL
LOGIC
.
22
2.1.2.1
PARTIAL
INTERPRETATIONS
FOR
PROPOSITIONAL
LOGIC
.
22
2.1.2.2
THE
SET
OF
INTERPRETATIONS
FOR
PARTIAL
PROPOSITIONAL
LOGIC
23
2.1.2.3
TRUTH
VERSUS
POTENTIAL
TRUTH
IN
PARTIAL
PROPOSITIONAL
LOGIC
25
2.1.2.4
TRUTH
OF
PROPOSITIONAL
FORMULAE
UNDER
SOME
VALUATION
.
.
25
2.1.2.5
POTENTIAL
TRUTH
UNDER
SOME
VALUATION
.
28
2.1.3
ALGEBRAIC
PROPERTIES
OF
PARTIAL
PROPOSITIONAL
LOGIC
.
29
2.1.3.1
SEMANTIC
SCOPE
IN
PARTIAL
PROPOSITIONAL
LOGIC
.
29
2.1.3.2
THE
GENERALIZED
BOOLEAN
ALGEBRA
OF
PARTIAL
PROPOSITIONAL
LOGIC
.
33
2.1.3.3
SATURATED
PAIRS
OF
SETS
.
35
2.1.4
SEMANTIC
ENTAILMENT
.
36
2.2
BETH
TABLEAU
METHOD
FOR
PARTIAL
PROPOSITIONAL
LOGIC
.
40
2.2.1
BETH
TABLEAU
RULES
FOR
PARTIAL
PROPOSITIONAL
LOGIC;
SYNTACTIC
ENTAILMENT
.
40
2.2.1.1
BETH
TABLEAUX
FOR
NEGATION
.
40
2.2.1.2
BETH
TABLEAUX
FOR
THE
BOTTOM
FUNCTION
.
40
2.2.1.3
BETH
TABLEAUX
FOR
CONJUNCTION
.
41
XIV
TABLE
OF
CONTENTS
2.2.1.4
BETH
TABLEAUX
FOR
DISJUNCTION
.
41
2.2.1.5
BETH
TABLEAUX
FOR
IMPLICATION
.
41
2.2.1.6
BETH
TABLEAUX
FOR
INTERJUNCTION
.
41
2.2.1.7
CLOSURE
CONDITIONS
FOR
PARTIAL
PROPOSITIONAL
LOGIC
FORMULAE
41
2.2.1.8
LINEAR
REPRESENTATION
OF
BETH
TABLEAUX
.
42
2.2.1.9
SYNTACTIC
ENTAILMENT,
SOUNDNESS
AND
COMPLETENESS
OF
THE
TABLEAU
METHOD
.
42
2.3
AXIOMATIZATION
OF
PARTIAL
PROPOSITIONAL
LOGIC
.
44
2.3.1
A
FORMAL
DEDUCTIVE
SYSTEM
WITH
AXIOMS
AND
PROOF
RULES
FOR
PARTIAL
PROPOSITIONAL
LOGIC
.
44
2.3.1.1
GENERALIZING
CLASSICAL
PROPOSITIONAL
LOGIC
.
44
2.3.2
STRONG
THEOREMS
VERSUS
WEAK
THEOREMS
.
49
2.3.2.1
STRONG
AXIOMATICS
OF
PARTIAL
PROPOSITIONAL
LOGIC
.
49
2.3.2.2
WEAK
AXIOMATICS
FOR
PARTIAL
PROPOSITIONAL
LOGIC
.
51
2.3.3
MONOTONICITY
ISSUES
IN
PARTIAL
PROPOSITIONAL
LOGIC
.
52
3
SYNTAX
OF
THE
LANGUAGE
OF
PARTIAL
INFORMATION
IONS
.
56
3.1
THE
LANGUAGE
OF
PARTIAL
INFORMATION
IONS
.
56
3.1.1
PARTIAL
INFORMATION
IONS
.
57
3.1.2
ALPHABET
.
58
3.1.3
FORMULAE
OF
PROPOSITIONAL
PARTIAL
INFORMATION
IONIC
LOGIC
.
58
3.1.4
OCCURRENCES
AND
THEIR
JUSTIFICATION
PREFIXES
.
60
3.1.4.1
OCCURRENCES
.
60
3.1.4.2
JUSTIFICATION-BOUND
AND
JUSTIFICATION-FREE
OCCURRENCES
.
63
3.1.4.3
PREFIX
AND
JUSTIFICATION
PREFIX
OF
A
FORMULA
.
.
64
3.1.4.4
RANK
OF
A
FORMULA
.
64
4
REASONING
WITH
PARTIAL
INFORMATION
IONS:
AN
OVERVIEW
67
4.1
FROM
REASONING
WITH
TOTAL
INFORMATION
TO
REASONING
WITH
PARTIAL
INFORMATION
.
67
4.2
REASONING
WITH
PARTIAL
INFORMATION
IN
PROPOSITIONAL
LOGIC
.
69
4.3
GLOBAL
APPROACH
TO
REASONING
WITH
PARTIAL
INFORMATION
IONS
84
4.4
REASONING
WITH
PARTIAL
INFORMATION
IN
FIRST-ORDER
LOGIC
.
.
85
4.5
THE
DYNAMICS
OF
LOGIC
SYSTEMS:
IS
THERE
A
LOGICAL
PHYSICS
OF
THE
WORLD?
.
91
4.5.1
USING
THE
LEAST
ACTION
PRINCIPLE
.
93
4.5.2
COMBINING
THE
LEAST
ACTION
PRINCIPLE
WITH
ABDUCTION:
AN
ABDUCTIVE
VARIATIONAL
PRINCIPLE
FOR
REASONING
ABOUT
ACTIONS
.
97
4.6
A
GEOMETRIC
VIEW
OF
REASONING
WITH
PARTIAL
INFORMATION
98
4.6.1
STATIC
LOGIC
SYSTEMS
.
99
4.6.2
DYNAMIC
LOGIC
SYSTEMS
.
99
4.7
CONCLUSION
.
101
TABLE
OF
CONTENTS
XV
5
SEMANTICS
OF
PARTIAL
INFORMATION
LOGIC
OF
RANK
1
.
103
5.1
TOWARDS
A
MODEL
THEORY
FOR
PARTIAL
INFORMATION
IONIC
LOGIC
103
5.2
THE
DOMAIN
ZLI
OF
IONIC
INTERPRETATIONS
OF
RANK
1
.
110
5.3
THE
SEMANTICS
OF
PARTIAL
INFORMATION
IONS
OF
RANK
1
.
.
.
.
112
5.3.1
THE
SEMANTICS
OF
IONIC
FORMULAE
OF
RANK
1
.
112
5.3.1.1
TRUTH
OF
FORMULAE
WITH
RESPECT
TO
SETS
OF
VALUATIONS
.
.
.
112
5.3.2
CANONICAL
JUSTIFICATIONS
AND
CONDITIONAL
PARTIAL
INFORMATION
IONS
.
,*
.
113
5.3.2.1
ACCEPTABILITY,
CONCEIVABILITY
OF
PROPOSITIONAL
FORMULAE
.
.
.
113
5.3.2.2
CANONICAL
JUSTIFICATION
FORMULAE
AND
THEIR
INTERPRETATION
.
114
5.3.2.3
ACCEPTABILITY
AND
CONCEIVABILITY
AS
LEVELS
OF
TRUTH
.
117
5.3.2.4
ACCEPTABLE
AND
UNACCEPTABLE
ELEMENTARY
CANONICAL
JUSTIFICATION
FORMULAE;
SEMANTICS
OF
PARTIAL
INFORMATION
IONS
.
121
5.3.2.5
SEMANTICS
OF
CONDITIONAL
IONS
.
122
5.3.3
CANONICAL
JUSTIFICATION
DECLARATIONS
AND
COERCION
IONS
.
.
.
124
5.4
INTERPRETATION
OF
PROPOSITIONAL
IONIC
FORMULAE
OF
RANK
1
.
.
126
5.4.1
ACCEPTANCE,
REJECTION
OF
A
JUSTIFICATION
BY
A
CONDITIONAL
ION
127
5.4.2
TRUTH
VERSUS
POTENTIAL
TRUTH
IN
PARTIAL
INFORMATION
IONIC
LOGIC
.
128
5.4.3
TRUTH
OF
IONIC
FORMULAE
OF
RANK
1
.
128
5.4.3.1
PLAIN
TRUTH:
.
129
5.4.3.2
PLAIN
POTENTIAL
TRUTH:
131
5.4.4
SOFT
TRUTH
OF
IONIC
FORMULAE
OF
RANK
1
.
.
133
5.4.4.1
SOFT
TRUTH:
'F=
S
OFT
T
P
.
133
5.4.4.2
SOFT
POTENTIAL
TRUTH:
LL=
SO
Y
T
Y
.
139
5.4.5
SEMANTIC
ENTAILMENTS
AND
EQUIVALENCE
.
139
5.4.6
DECOMPOSITION
OF
CONDITIONAL
PARTIAL
INFORMATION
IONS
INTO
ELEMENTARY
JUSTIFICATIONS
AND
SOFT
FORMULAE
.
141
5.4.7
TRUTH
AND
THE
INFORMATION
ORDERING
.
143
5.4.7.1
ACCEPTABLE
VERSUS
UNACCEPTABLE
JUSTIFICATIONS
.
147
5.4.8
ELEMENTARY
JUSTIFICATIONS
VERSUS
CANONICAL
JUSTIFICATIONS
OF
RANK
1
.
155
5.4.8.1
THE
SEMANTICS
OF
ELEMENTARY
JUSTIFICATIONS
(UNIVERSAL
IONS
CASE)
.
156
5.4.8.2
THE
SEMANTICS
OF
ELEMENTARY
JUSTIFICATIONS
(EXISTENTIAL-UNIVERSAL
IONS
CASE)
.
157
6
SEMANTICS
OF
PARTIAL
INFORMATION
LOGIC
OF
INFINITE
RANK
158
6.1
THE
CONTINUOUS
BUNDLE
AOO
OF
IONIC
INTERPRETATIONS
.
158
6.1.1
THE
CATEGORY
OF
CONTINUOUS
BUNDLES
.
160
6.1.2
IONIC
INTERPRETATIONS
AND
CONTINUOUS
BUNDLES
.
162
6.1.3
THE
PROJECTIVE/INJECTIVE
SYSTEM
.
163
6.2
INTERPRETATION
OF
PROPOSITIONAL
PARTIAL
INFORMATION
IONIC
FORMULAE
.
170
XVI
TABLE
OF
CONTENTS
7
ALGEBRAIC
PROPERTIES
OF
PARTIAL
INFORMATION
IONIC
LOGIC
172
7.1
SCOPES
AND
BOOLEAN
ALGEBRA
.
173
7.1.1
SEMANTIC
SCOPES
.
173
7.1.1.1
SEMANTIC
SCOPE
.
173
7.1.1.2
POTENTIAL
SEMANTIC
SCOPE
.
176
7.1.1.3
SEMANTIC
SCOPE
ORDERING
BETWEEN
FORMULAE
.
177
7.1.2
JUSTIFIABILITY
SCOPE
.
177
7.1.3
THE
GENERALIZED
BOOLEAN
ALGEBRA
OF
PROPOSITIONAL
PARTIAL
INFORMATION
IONIC
LOGIC
.
181
7.1.4
WARRANT
SCOPE
.
185
7.1.4.1
THE
SEMANTICS
OF
ELEMENTARY
JUSTIFICATIONS
(EXISTENTIAL-UNIVERSAL
IONS
CASE)
.
189
7.2
ORDERINGS
ON
IONIC
INTERPRETATIONS;
INTERPRETATION
SCHEMES
.
191
7.2.1
QUASI-ORDERINGS
AND
PARTIAL
ORDERINGS
.
192
7.2.2
JUSTIFICATION
ORDERINGS
.
192
7.2.2.1
JUSTIFICATION
ORDERING
.
192
7.2.2.2
JUSTIFICATION
ORDERING
WITH
RESPECT
TO
A
GIVEN
SET
OF
FORMULAE,
SINGLE
OPERATOR
CASE
.
195
7.2.2.3
JUSTIFICATION
ORDERING
WITH
RESPECT
TO
A
GIVEN
SET
OF
FORMULAE,
GENERAL
CASE
.
197
7.2.3
WARRANT
ORDERINGS
.
198
7.2.3.1
WARRANT
ORDERING,
INTERPRETATION
SCHEMES
AND
MODEL
SCHEMES
.
198
7.2.3.2
WARRANT
EQUIVALENCE
WITH
RESPECT
TO
A
GIVEN
SET
OF
FORMULAE,
SINGLE
OPERATOR
CASE
.
201
7.2.3.3
ON
THE
NON-MONOTONICITY
OF
TRUTH
WITH
RESPECT
TO
THE
WARRANT
ORDERING
.
202
7.2.4
DEFAULT
ORDERINGS
ON
IONIC
INTERPRETATIONS
.
203
7.2.4.1
DEFAULT
ORDERING
.
203
7.3
SEMIOTIC
ORDERINGS
AND
GALOIS
CONNECTION
.
205
7.3.1
SEMIOTIC
ORDERING
ON
JUSTIFICATION
EQUIVALENCE
CLASSES
.
.
.
205
7.3.2
SEMIOTIC
ORDERING
ON
WARRANT
EQUIVALENCE
CLASSES;
GALOIS
CONNECTION
.
206
7.3.3
SEMIOTIC
ORDERING
WITH
RESPECT
TO
A
GIVEN
SET
OF
JUSTIFICATIONS
.
215
8
BETH
TABLEAUX
FOR
PROPOSITIONAL
PARTIAL
INFORMATION
IONIC
LOGIC
.
217
8.1
SEMANTIC
ENTAILMENT
IN
PROPOSITIONAL
IONIC
LOGIC
.
217
8.1.1
SATISFACTION
OF
GENERAL
SIGNED
FORMULAE
.
219
8.1.2
SEMANTIC
ENTAILMENT
IN
PROPOSITIONAL
PARTIAL
INFORMATION
IONIC
LOGIC
.
220
8.2
BETH
TABLEAUX
IN
PROPOSITIONAL
PARTIAL
INFORMATION
IONIC
LOGIC
.
223
8.2.1
TABLEAU
RULES
FOR
CONDITIONAL
PARTIAL
INFORMATION
IONS
.
.
.
223
TABLE
OF
CONTENTS
XVII
8.2.1.1
BETH
TABLEAUX
FOR
UNIVERSAL
IONS
.
225
8.2.1.2
BETH
TABLEAUX
FOR
EXISTENTIAL-UNIVERSAL
IONS
.
227
8.2.1.3
BETH
TABLEAUX
FOR
UNIVERSAL-EXISTENTIAL
IONS
.
228
8.2.1.4
BETH
TABLEAUX
FOR
CANONICAL
JUSTIFICATION
FORMULAE
WITH
SETS
.
230
8.2.2
BETH
TABLEAUX
FOR
COERCION
PARTIAL
INFORMATION
IONS
.
233
8.3
THE
GENERAL
TABLEAU
METHOD
FOR
PROPOSITIONAL
IONIC
LOGIC
.
235
8.3.1
GENERAL
TABLEAU
RULES
FOR
QUANTIFICATION
IN
CANONICAL
JUSTIFICATIONS
.
235
8.3.2
GENERAL
TABLEAU
RULES
FOR
PROPOSITIONED
LOGIC
CONNECTIVES,
IONIC
OPERATORS
AND
SETS
OF
JUSTIFICATIONS
.
238
8.3.3
DERIVED
BETH
TABLEAUX
RULES
FOR
CANONICAL
JUSTIFICATION
FORMULAE
OF
RANK
1
.
240
8.3.4
CLOSURE
CONDITIONS
FOR
BETH
TABLEAUX
IN
PARTIED
INFORMATION
IONIC
LOGIC
.
241
8.3.5
CLOSURE
PROPERTIES
OF
BETH
TABLEAUX
.
243
8.3.5.1
CLOSURE
PROPERTIES
INHERITED
FROM
PARTIED
PROPOSITIONAL
LOGIC
.
243
8.3.5.2
CLOSURE
PROPERTIES
"
SOFT
KNOWLEDGE
EXTENDS
HARD
KNOWLEDGE
"
.
244
8.3.5.3
CLOSURE
PROPERTIES
"
JUSTIFICATION
KNOWLEDGE
EXTENDS
HARD
KNOWLEDGE
"
.
244
8.3.5.4
GENERAL
CLOSURE
RULES
FOR
JUSTIFICATIONS
.
245
8.3.5.5
CLOSURE
PROPERTIES
FOR
CONNECTIVES
IN
ELEMENTARY
CANONICAL
JUSTIFICATIONS
.
246
8.3.6
SYNTACTIC
ENTAILMENT,
SOUNDNESS
OF
THE
TABLEAU
METHOD
FOR
IONIC
LOGIC
.
247
8.3.7
SORTED
PATTERNS
OF
RANK
1,
AND
THEIR
SATISFACTION
.
254
8.3.7.1
SIMPLE
PATTERNS
.
259
8.3.8
THE
CONTINUITY
OF
THE
BETH
TABLEAU
TECHNIQUE
FOR
PARTIAL
INFORMATION
IONIC
LOGIC
.
261
9
APPLICATIONS;
THE
STATICS
OF
LOGIC
SYSTEMS
.
263
9.1
THE
STATICS
OF
LOGIC
SYSTEMS
.
263
9.2
WEAK
IMPLICATION
IN
PARTIAL
INFORMATION
IONIC
LOGIC;
TABLEAUX
AND
MODEL
THEORY
.
265
9.2.1
INTRODUCTION
TO
WEAK
IMPLICATION
.
265
9.2.2
FORMAL
PROPERTIES
OF
WEAK
IMPLICATION
.
266
9.2.3
APPLICATIONS
OF
WEAK
IMPLICATION
.
269
9.2.3.1
EXAMPLE
1:
IS
TWEETY
A
BIRD?
.
269
9.2.3.2
EXAMPLE
2:
IS
JOHN
A
PERSON?
.
271
9.2.4
CONTRAPOSITION
.
273
9.2.5
LOTTERY
PARADOX:
MODELS
.
274
9.2.6
CASE
ANALYSIS
USING
TWO
STRONG
STATEMENTS:
TABLEAUX
AND
MODELS
.
275
XVIII
TABLE
OF
CONTENTS
9.2.7
CASE
ANALYSIS
USING
TWO
WEAK
STATEMENTS
.
276
9.3
TRUTH
MAINTENANCE
.
278
9.4
EXPRESSING
PARTIALNESS
OF
INFORMATION
USING
PARTIAL
INFORMATION
IONS
.
285
9.5
THE
HEISENBERG
PRINCIPLE
AND
QUANTUM
MECHANICS
.
286
9.5.1
HEISENBERG
'
S
PRINCIPLE
AND
QUANTUM
MECHANICS
.
286
9.5.2
SPECIALIZING
THE
VALUE
OF
THE
CONDITIONAL
IONIC
OPERATOR
INTO
*
=
?
.
290
9.5.3
GENERAL
STRUCTURE
OF
THE
ELECTRON
INTERFERENCE
PROBLEM
.
.
.
293
9.6
ALEXINUS
AND
MENEDEMUS
PROBLEM
.
296
9.7
DERIVING
PRESUPPOSITIONS
IN
NATURAL
LANGUAGE
.
298
9.7.1
PRESUPPOSITIONS
AND
PARTIAL
INFORMATION
LOGIC
.
298
9.7.2
DEFINING
A
FORMAL
NOTION
OF
PRESUPPOSITION
IN
PARTIAL
INFORMATION
LOGIC
.
299
9.7.3
A
SEMANTIC
DEFINITION
OF
PRESUPPOSITIONS
.
300
9.7.4
COMPUTING
PRESUPPOSITIONS
OF
COMPLEX
SENTENCES
.
302
10
NAIVE
AXIOMATICS
AND
PROOF
THEORY
OF
PROPOSITIONAL
PARTIAL
INFORMATION
IONIC
LOGIC
.
305
10.1
AXIOMATICS
AND
PROOF
THEORY
OF
PROPOSITIONAL
PARTIAL
INFORMATION
IONIC
LOGIC
.
305
10.1.1
AXIOMS
AND
PROOF
RULES
FOR
PROPOSITIONAL
PARTIAL
INFORMATION
IONIC
LOGIC
(PIL)
.
307
10.1.1.1
AXIOMS
INHERITED
FROM
PROPOSITIONAL
LOGIC
.
307
10.1.1.2
THE
PROPOSITIONAL
LOGIC
OF
PARTIAL
INFORMATION
IONS:
P*-LOGIC
.
307
10.1.1.3
AXIOMS
THAT
ARE
SPECIFIC
TO
PARTIAL
INFORMATION
IONS
.
307
10.1.1.4
PROOF
RULES
.
308
10.1.2
LAKATOSIAN
LOGICS:
IC-LOGIC
AND
J-LOGIC
.
315
10.1.3
NON-LAKATOSIAN
LOGICS:
E-LOGIC
AND
N-LOGIC
.
317
10.1.3.1
THE
LOGIC
OF
ELEMENTARY
JUSTIFICATIONS
E
.
318
10.1.3.2
TRUTH
MAINTENANCE
LOGIC
N
.
326
10.1.3.3
MODAL
PROPERTIES
OF
N-LOGIC
.
332
10.2
APPLICATION
OF
CONJUGATED
PAIRS:
A
SEMANTIC
DEFINITION
OF
POSSIBILITY
AND
NECESSITY
.
335
10.3
WEAK
IMPLICATION
IN
PARTIAL
INFORMATION
IONIC
LOGIC;
PROOF
THEORY
.
338
10.3.1
PROOF-THEORETIC
PROPERTIES
OF
WEAK
IMPLICATION
.
338
10.3.1.1
TRANSITIVITY
AND
MODUS
TOLLENS
.
340
10.3.1.2
"
A
IMPLIES
WEAKLY
6"
:
A
-
[6]
.
340
10.3.1.3
WEAKLY
"
A
IMPLIES
B
"
:
[A
-
YY
6]
.
342
10.3.2
APPLICATIONS
OF
WEAK
IMPLICATION
.
342
10.3.2.1
IS
TWEETY
A
BIRD?
.
342
10.3.2.2
IS
JOHN
A
PERSON?
.
344
10.3.3
LOTTERY
PARADOX
.
345
TABLE
OF
CONTENTS
XIX
10.3.4
USE
OF
DISJUNCTIVE
INFORMATION
.
345
10.3.4.1
CASE
ANALYSIS
USING
TWO
HARD
STATEMENTS
.
345
10.3.4.2
CASE
ANALYSIS
USING
TWO
WEAK
STATEMENTS
.
346
10.3.5
LUKASZEWICZ
RULES
AS
METATHEOREMS
IN
THE
IC-LOGIC
AND
THE
J-LOGIC
.
348
10.3.6
AN
EXAMPLE
OF
REITER,
CRISCUOLO
AND
LUKASZEWICZ
REVISITED
IN
THE
J-LOGIC
.
349
10.3.6.1
MODEL-THEORETIC
ANALYSIS
OF
THE
EXAMPLE
.
350
10.3.6.2
PROOF-THEORETIC
ANALYSIS
OF
THE
EXAMPLE
.
352
11
SOUNDNESS
OF
PROPOSITIONAL
PARTIAL
INFORMATION
IONIC
LOGIC
356
11.1
SOUNDNESS
OF
PROPOSITIONAL
PARTIAL
INFORMATION
IONIC
LOGIC
.
356
11.1.1
POTENTIAL
VALIDITY
OF
THE
AXIOMS
OF
PROPOSITIONAL
IC-LOGIC
.
356
11.1.2
POTENTIAL
VALIDITY
OF
THE
AXIOMS
OF
PROPOSITIONAL
E-LOGIC
.
.
362
11.1.3
POTENTIAL
VALIDITY
OF
PROPOSITIONAL
N-LOGIC
AXIOMS
.
364
11.1.4
TRUTH
VERSUS
POTENTIAL
TRUTH
OF
THEOREMS
.
365
12
FORMAL
AXIOMATICS
OF
PROPOSITIONAL
PARTIAL
INFORMATION
IONIC
LOGIC
.
366
12.1
STRENGTHENING
THE
AXIOMS
OF
PARTIAL
INFORMATION
IONIC
LOGIC
366
12.2
FORMAL
AXIOMATICS
OF
IONIC
LOGIC
.
383
12.2.0.1
STRONG
AXIOMATICS
OF
PROPOSITIONAL
PARTIAL
INFORMATION
IONIC
LOGIC
.
383
12.2.0.2
INFERENCE
RULES
.
385
12.2.0.3
WEAK
AXIOMATICS
OF
PROPOSITIONAL
PARTIAL
INFORMATION
IONIC
LOGIC
.
386
13
EXTENSION
AND
JUSTIFICATION
CLOSURE
APPROACH
TO
PARTIAL
INFORMATION
IONIC
LOGIC
.
389
13.1
JUSTIFICATION
CLOSURE
AND
EXTENSIONS
.
395
13.1.1
JUSTIFICATION
CLOSURES
.
395
13.1.2
EXTENSIONS
IN
THE
SENSE
OF
A
GIVEN
JUSTIFICATION
CLOSURE
.
.
397
13.1.3
IONIC
EXTENSIONS
.
399
13.1.4
EXAMPLES
OF
EXTENSIONS
IN
THE
SENSE
OF
REITER
.
409
13.1.5
COMPARING
REITER
'
S
AND
LUKASZEWICZ
'
LOGICS
.
413
13.2
IONIC
MODELS
AND
EXTENSIONS
.
415
13.2.1
A
HEURISTIC
FOR
BUILDING
IONIC
EXTENSIONS
OF
DEFAULT
THEORIES
.
417
14
PARTIAL
FIRST-ORDER
LOGIC
.
425
14.1
PARTIAL
FIRST-ORDER
LOGIC
.
425
14.1.1
THE
LANGUAGE
OF
PARTIAL
FIRST-ORDER
LOGIC
(FOL)
.
425
14.1.1.1
ALPHABET,
TERMS
AND
FORMULAE
.
425
14.1.2
SEMANTICS
OF
PARTIAL
FIRST-ORDER
LOGIC
.
426
14.1.2.1
THE
SET
OF
INTERPRETATIONS
FOR
PARTIAL
FIRST-ORDER
LOGIC
.
.
426
XX
TABLE
OF
CONTENTS
14.1.2.2
TRUTH
VERSUS
POTENTIAL
TRUTH
IN
PARTIAL
FIRST-ORDER
LOGIC
.
428
14.1.2.3
TRUTH
AND
POTENTIAL
TRUTH
UNDER
SOME
FIRST-ORDER
VALUATION
.
428
14.1.3
ALGEBRAIC
PROPERTIES
OF
PARTIAL
FIRST-ORDER
LOGIC
.
429
14.1.4
THE
GENERALIZED
CYLINDRIC
ALGEBRA
OF
PARTIAL
FIRST-ORDER
LOGIC
.
430
14.1.5
BETH
TABLEAUX
RULES
AND
ENTAILMENT
IN
PARTIAL
FIRST-ORDER
LOGIC
.
430
14.1.5.1
SMULLYAN
'
S
CLASSIFICATION
OF
SIGNED
QUANTIFIED
FORMULAE
OF
PARTIAL
FOL
.
430
14.1.5.2
EXISTENTIAL
TYPE
RULES
FOR
6
TYPE
FORMULAE
.
431
14.1.5.3
UNIVERSAL
TYPE
RULES
FOR
7
TYPE
FORMULAE
.
431
14.1.6
NAIVE
AXIOMATICS
AND
PROOF
THEORY
FOR
PARTIAL
FIRST-ORDER
LOGIC
.
432
14.1.6.1
AXIOMS
OF
PARTIAL
FIRST-ORDER
LOGIC
.
432
14.1.6.2
SOUNDNESS
OF
PARTIAL
FIRST-ORDER
LOGIC
.
433
14.2
PARTIAL
FIRST-ORDER
LOGIC
WITH
EQUALITY
.
434
14.2.1
OBJECTS
AND
FICTIONS
.
435
14.2.2
DESIGNATING
AND
POTENTIALLY
DESIGNATING
TERMS
.
437
14.2.3
PARTIAL
FOL
WITH
EQUALITY
.
438
14.2.3.1
QUANTIFYING
OVER
ACTUAL
OBJECTS
VERSUS
QUANTIFYING
OVER
POTENTIAL
OBJECTS
.
438
14.2.3.2
THE
LANGUAGE
OF
PARTIAL
FOL
WITH
EQUALITY
.
440
14.2.3.3
TRUTH
VERSUS
POTENTIAL
TRUTH
IN
PARTIAL
FIRST-ORDER
LOGIC
WITH
EQUALITY
.
440
14.2.3.4
TRUTH
AND
POTENTIAL
TYUTH
UNDER
SOME
FIRST-ORDER
VALUATION
.
440
14.2.3.5
EXISTENCE
ISSUES
IN
PARTIAL
FIRST-ORDER
LOGIC
WITH
EQUALITY
443
14.2.4
THE
GENERALIZED
CYLINDRIC
ALGEBRA
OF
PARTIAL
FIRST-ORDER
LOGIC
WITH
EQUALITY
.
445
14.2.5
BETH
TABLEAUX
FOR
PARTIAL
FOL
WITH
EQUALITY
.
446
14.2.5.1
TABLEAUX
FOR
EQUALITY
.
447
14.2.5.2
TABLEAUX
FOR
QUANTIFIED
FORMULAE
IN
PARTIAL
FOL
WITH
EQUALITY
.
447
15
SYNTAX
AND
SEMANTICS
OF
FIRST-ORDER
PARTIAL
INFORMATION
IONS
.
453
15.1
SYNTAX
OF
THE
LANGUAGE
OF
FIRST-ORDER
PARTIAL
INFORMATION
IONS
(FIL)
.
453
15.1.1
ALPHABET
.
453
15.1.2
TERMS
.
454
15.1.3
FORMULAE
OF
FIRST-ORDER
PARTIAL
INFORMATION
IONIC
LOGIC
(FIL)
.
454
15.1.4
OCCURRENCES
AND
THEIR
JUSTIFICATION
PREFIXES
.
458
TABLE
OF
CONTENTS
XXI
15.2
TOWARDS
A
MODEL
THEORY
FOR
FIRST-ORDER
PARTIAL
INFORMATION
IONIC
LOGIC
.
458
15.3
INTERPRETATION
OF
FIL
FORMULAE
.
460
15.3.1
DOMAIN
OF
(FIRST-ORDER)
INTERPRETATIONS
OF
RANK
1
.
.
.
460
15.3.2
INTERPRETATION
OF
FIRST-ORDER
IONIC
FORMULAE
OF
RANK
1
.
.
.
460
15.3.2.1
TRUTH
.
460
15.3.2.2
SOFT
TRUTH
.
462
15.3.3
EXAMPLE:
SORITES
PARADOX
.
463
15.3.4
CONTINUOUS
BUNDLE
A
X
FOR
FIL
.
464
15.4
ALGEBRAIC
PROPERTIES
OF
FIRST-ORDER
PARTIAL
INFORMATION
IONIC
LOGIC
.
465
15.4.1
THE
GENERALIZED
CYLINDRIC
ALGEBRA
OF
FIRST-ORDER
PARTIAL
INFORMATION
IONIC
LOGIC
.
465
16
BETH
TABLEAUX
FOR
FIRST-ORDER
PARTIAL
INFORMATION
IONS
466
16.1
BETH
TABLEAUX
FOR
FIL
OF
RANK
1
.
466
16.1.1
TABLEAUX
RULES
FOR
EQUALITY
.
466
16.1.2
TABLEAU
RULES
FOR
QUANTIFICATION
.
467
16.1.2.1
EXISTENTIAL
TYPE
RULES
(ACTUAL
AND
POTENTIAL
QUANTIFICATION)
.
467
16.1.2.2
UNIVERSAL
TYPE
RULES
.
468
16.2
APPLICATIONS
TO
REASONING
WITH
PARTIAL
INFORMATION
.
477
16.2.1
COUNTER-EXAMPLE
AXIOMS
.
478
16.2.2
SEPARATING
"
OPTIMISM
"
FROM
UNIVERSAL
QUANTIFICATION
.
.
.
481
16.2.3
BASIC
DEFAULT
REASONING
.
485
16.2.4
DEFAULT
REASONING
WITH
IRRELEVANT
INFORMATION
.
485
16.2.5
DEFAULT
REASONING
WITH
INCOMPLETE
INFORMATION
.
486
16.2.6
DEFAULT
REASONING
IN
AN
OPEN
DOMAIN
.
487
16.2.7
DEFAULT
REASONING
WITH
INCOMPLETE
INFORMATION
IN
AN
OPEN
DOMAIN
.
488
16.2.8
DEFAULT
REASONING
WITH
A
DISABLED
DEFAULT
.
488
16.3
DERIVING
PRESUPPOSITIONS
IN
NATURAL
LANGUAGE
(FIRST-ORDER
CASE)
.
489
16.3.1
COMPUTING
PRESUPPOSITIONS
OF
COMPLEX
SENTENCES
(FIRST-ORDER
CASE)
.
493
16.3.2
PRESUPPOSITIONS
OF
PROPOSITIONAL
LOGIC
STRUCTURES:
THE
PROJECTION
PROBLEM
.
493
16.3.2.1
POSSIBLY
.
493
16.3.2.2
CONDITIONAL
.
494
16.3.3
COMPUTING
PRESUPPOSITIONS
OF
QUANTIFICATION
LOGIC
STRUCTURES:
THE
EXISTENTIAL
PRESUPPOSITION
PROBLEM
.
497
XXII
TABLE
OF
CONTENTS
17
AXIOMATICS
AND
PROOF
THEORY
OF
FIRST-ORDER
PARTIAL
INFORMATION
IONIC
LOGIC
.
500
17.1
DEFINITION
OF
A
FORMAL
DEDUCTIVE
SYSTEM
OF
FIRST-ORDER
PARTIAL
INFORMATION
IONIC
LOGIC
(FIL)
.
500
17.1.1
NAIVE
AXIOMATICS
AND
PROOF
THEORY
OF
FIRST-ORDER
PARTIAL
INFORMATION
IONIC
LOGIC
.
500
17.1.1.1
AXIOMS
INHERITED
FROM
PROPOSITIONAL
PARTIAL
INFORMATION
IONIC
LOGIC
.
500
17.1.1.2
QUANTIFICATION
LOGIC
AXIOMS
INHERITED
FROM
FIRST-ORDER
LOGIC
.
500
17.1.1.3
AXIOMS
THAT
ARE
SPECIFIC
TO
FIRST-ORDER
PARTIAL
INFORMATION
IONS
.
501
17.1.1.4
PROOF
RULES
.
501
17.1.1.5
LAKATOSIAN
VERSUS
NON-LAKATOSIAN
FIRST-ORDER
LOGICS
.
501
17.2
WEAK
IMPLICATION
IN
FIRST-ORDER
PARTIAL
INFORMATION
IONIC
LOGIC
.
502
17.2.1
SORITES
PARADOX
.
502
17.2.2
THE
YALE
SHOOTING
PROBLEM
REVISITED
.
503
17.3
POTENTIAL
VALIDITY
.
505
18
PARTIAL
INFORMATION
IONIC
LOGIC
PROGRAMMING
.
506
18.1
PROPOSITIONAL
PARTIAL
INFORMATION
LOGIC
PROGRAMMING
.
.
.
506
18.1.1
SYNTAX
OF
PROPOSITIONAL
PARTIAL
INFORMATION
LOGIC
PROGRAMS
506
18.1.2
DERIVATION
STEPS
.
510
18.1.3
LEAST
FIXPOINT
SEMANTICS
OF
PROPOSITIONAL
PARTIAL
INFORMATION
LOGIC
PROGRAMS
IN
TERMS
OF
THE
T
OPERATOR
.
.
517
18.2
FIRST-ORDER
PARTIAL
INFORMATION
LOGIC
PROGRAMMING
.
518
18.2.1
SYNTAX
OF
FIRST-ORDER
PARTIAL
INFORMATION
LOGIC
PROGRAMS
.
518
18.2.2
DERIVATION
STEPS
.
519
18.2.3
LEAST
FIXPOINT
SEMANTICS
OF
FIRST-ORDER
PARTIAL
INFORMATION
LOGIC
PROGRAMS
IN
TERMS
OF
THE
T
OPERATOR
.
521
18.3
APPLICATIONS
OF
FIRST-ORDER
LOGIC
PROGRAMS
.
521
18.3.1
UNDESIRABLE
PROPERTIES
OF
SKOLEMIZATION
IN
REITER
'
S
DEFAULT
LOGIC
.
521
18.3.2
POOLE
'
S
LOGICAL
FRAMEWORK
FOR
DEFAULT
REASONING
.
525
18.3.2.1
POOLE
'
S
PROGRAMS
AS
LOGIC
FIELDS
.
525
18.3.2.2
POOLE
'
S
PROGRAMS
AS
PARTIAL
INFORMATION
LOGIC
PROGRAMS
.
530
18.3.3
REASONING
ABOUT
UNKNOWN
ACTIONS
.
534
19
SYNTACTIC
AND
SEMANTIC
PATHS;
APPLICATION
TO
DEFEASIBLE
INHERITANCE
.
537
19.1
SYNTACTIC
PATHS
AND
SEMANTIC
PATHS
.
537
19.1.1
REGULAR
MODELS
AND
CONTINUOUS
MODELS
OF
PROPOSITIONAL
PARTIAL
INFORMATION
LOGIC
PROGRAMS
.
537
19.1.1.1
SYNTACTIC
PATHS,
SEMANTIC
PATHS
.
537
TABLE
OF
CONTENTS
XXIII
19.1.1.2
SEMANTIC
PATHS
IN
SETS
OF
INTERPRETATION
SCHEMES
.
539
19.1.1.3
CONSTRAINED
REGULAR
MODELS
.
545
19.1.2
REGULAR
MODELS
AND
CONTINUOUS
MODELS
OF
FIRST-ORDER
PARTIAL
INFORMATION
LOGIC
PROGRAMS
.
547
19.2
APPLICATION:
THE
AXIOMATIZATION
OF
MULTIPLE
DEFEASIBLE
INHERITANCE
.
548
19.2.1
SANDEWALL
'
S
PRIMITIVE
STRUCTURES
.
549
19.2.2
SANDEWALL
'
S
STRUCTURES
AS
A
PATH
RULE
.
561
20
THE
FRAME
PROBLEM:
THE
DYNAMICS
OF
LOGIC
SYSTEMS
.
.
562
20.1
THE
DYNAMICS
OF
LOGIC
SYSTEMS
.
563
20.1.1
TOWARDS
A
LEAST
ACTION
PRINCIPLE
FOR
THE
DYNAMICS
OF
LOGIC
SYSTEMS
.
565
20.1.2
THE
OCEANIA
PROBLEM
.
565
20.1.2.1
THE
GLOBAL
APPROACH
TO
THE
OCEANIA
PROBLEM
.
566
20.1.2.2
DEDUCTIVE
SEQUENCE
APPROACH
TO
THE
OCEANIA
PROBLEM
.
.
.
567
20.1.2.3
DYNAMIC
APPROACH
TO
THE
OCEANIA
PROBLEM
.
570
20.1.3
THE
CHARACTERISTIC
SURFACE
OF
A
DYNAMIC
LOGIC
SYSTEM
.
.
.
573
20.1.3.1
SYNTACTIC
PATHS
.
573
20.1.3.2
VARIETY
DEFINED
BY
A
SYNTACTIC
PATH
.
574
20.1.3.3
CHARACTERISTIC
SURFACE
OF
A
SYNTACTIC
PATH
.
574
20.1.3.4
SEMANTIC
PATHS
IN
A
VARIETY
.
575
20.1.3.5
SEMANTIC
PATHS
ON
A
CHARATERISTIC
SURFACE
.
576
20.1.3.6
GALOIS
CONNECTION
BETWEEN
THE
VARIETY
OF
A
SYNTACTIC
PATH
AND
ITS
CHARACTERISTIC
SURFACE
.
577
20.1.4
THE
LEAST
ACTION
PRINCIPLE
OF
THE
DYNAMICS
OF
LOGIC
SYSTEMS
.
,
.
577
20.2
THE
MARATHON
PROBLEM
.
578
20.2.1
OPERATIONAL
SEMANTICS
OF
THE
MARATHON
PROBLEM
.
579
20.2.2
LEAST
FIXPOINT
OF
THE
MARATHON
PROBLEM
.
581
20.2.3
DEDUCTIVE
SEQUENCE
APPROACH
TO
THE
MARATHON
PROBLEM
.
.
582
20.2.4
DYNAMIC
SEQUENCE
APPROACH
TO
THE
MARATHON
PROBLEM
.
.
584
20.2.5
PRACTICAL
MEANING
OF
THE
MODELS
OBTAINED
.
585
20.3
THE
VANISHING
CAR
PROBLEM
.
586
20.4
THE
YALE
SHOOTING
PROBLEM,
FRAME
PROBLEM
FOR
TEMPORAL
PROJECTION
.
587
20.4.1
THE
GLOBAL
APPROACH
TO
THE
YALE
SHOOTING
PROBLEM,
AND
ITS
WEAKNESSES
.
588
20.4.1.1
HANKS
AND
MCDERMOTT
'
S
"
CONSTRUCTION
"
.
589
20.4.1.2
MAKING
SURE
FRED
DIES:
MORRIS
'
FORMALIZATION
OF
THE
YALE
SHOOTING
PROBLEM
.
593
20.4.1.3
EXTENSIONAL
SUPPORTS
IN
THE
YSP
.
597
20.4.1.4
SHOULD
FRED
ACTUALLY
DIE?
.
598
20.4.2
OPERATIONAL
SEMANTICS
OF
THE
YALE
SHOOTING
PROBLEM
.
603
20.4.3
LEAST
FIXPOINT
OF
THE
YALE
SHOOTING
PROBLEM
.
605
XXIV
TABLE
OF
CONTENTS
20.4.3.1
MINIMAL
MODELS
OF
THE
YALE
SHOOTING
PROBLEM
.
606
20.4.3.2
DEDUCTIVE
SEQUENCE
APPROACH
TO
THE
YALE
SHOOTING
PROBLEM
606
20.4.3.3
PHASE
DIAGRAM
OF
THE
YALE
SHOOTING
PROBLEM
.
612
20.4.4
DYNAMIC
APPROACH
TO
THE
YALE
SHOOTING
PROBLEM
.
613
20.5
REASONING
ABOUT
ACTIONS
WITHIN
THE
FRAMEWORK
OF
EXTENSIONS
AND
JUSTIFICATION
CLOSURES
.
617
20.5.1
THE
EXTENSION
AND
JUSTIFICATION
CLOSURE
APPROACH
TO
THE
YSP
.
618
20.5.2
THE
EXTENSION
AND
JUSTIFICATION
CLOSURE
APPROACH
TO
THE
MARATHON
PROBLEM
.
621
21
REASONING
ABOUT
ACTIONS:
PROJECTION
PROBLEM
.
624
21.1
MODIFIED
FRAME
PROBLEM
FOR
TEMPORAL
PROJECTION
.
624
21.2
THE
ASSASSIN
PROBLEM
.
630
21.2.1
LEAST
FIXPOINT
AND
MINIMAL
MODELS
OF
THE
ASSASSIN
PROBLEM
631
21.2.2
DEDUCTIVE
SEQUENCE
APPROACH
TO
THE
ASSASSIN
PROBLEM
.
.
.
631
21.3
FORCING
DISCONTINUITY
INTO
THE
YALE
SHOOTING
PROBLEM
.
.
.
639
21.3.1
FIRST
DISCONTINUOUS
YSP
.
639
21.3.2
SECOND
DISCONTINUOUS
YSP:
SEPARATING
THE
DEDUCTIVE
APPROACH
FROM
THE
DYNAMIC
APPROACH
.
642
21.4
THE
SPECTRE
PROBLEM
(TEMPORAL
EXPLANATION)
.
645
21.4.1
LEAST
FIXPOINT
OF
THE
SPECTRE
PROBLEM
.
646
21.4.2
MINIMAL
MODELS
OF
THE
SPECTRE
PROBLEM
.
648
21.4.2.1
DYNAMIC
SEQUENCE
OF
THE
SYSTEM
OF
THE
SPECTRE
PROBLEM
.
.
648
21.5
THE
ROBOT
PROBLEM
.
658
21.5.1
LEAST
FIXPOINT
OF
THE
ROBOT
PROBLEM
.
659
21.5.2
MINIMAL
MODELS
OF
THE
ROBOT
PROBLEM
.
662
21.5.2.1
DEDUCTIVE
SEQUENCE
APPROACH
.
662
21.5.2.2
DYNAMIC
SEQUENCE
APPROACH
.
663
21.5.3
DIAGNOSING
THE
ANOMALOUS
BEHAVIOUR
OF
THE
ROBOT
.
666
21.5.3.1
THE
ROBOT
IS
OBSERVED
MOVING
FORWARD
.
666
21.5.3.2
THE
ROBOT
IS
OBSERVED
MOVING
BACKWARD
.
669
21.5.3.3
THE
ROBOT
IS
OBSERVED
MOVING
.
670
21.6
THE
YALE
SHOOTING
PROBLEM,
TEMPORAL
PROJECTION
.
672
21.6.1
LEAST
FIXPOINT
OF
THE
TEMPORAL
PROJECTION
PROBLEM
.
672
21.6.2
MINIMAL
MODELS
OF
THE
TEMPORAL
PROJECTION
PROBLEM
.
674
21.6.3
CONTINUOUS
MODEL
OF
THE
TEMPORAL
PROJECTION
PROBLEM
.
.
.
678
21.7
REASONING
ABOUT
THE
UNKNOWN
ORDER
OF
ACTIONS
.
679
22
REASONING
ABOUT
ACTIONS:
EXPLANATION
PROBLEM
.
681
22.1
THE
EXPLANATION
PROBLEM
.
682
22.2
THE
ABDUCTIVE
VARIATIONAL
PRINCIPLE
FOR
REASONING
ABOUT
ACTIONS
.
683
22.2.1
THE
GENERATION
OF
THE
VARIATION
BY
MEANS
OF
ABDUCTION
.
.
683
22.2.2
THE
ABDUCTION
PRINCIPLE
IN
PARTIAL
INFORMATION
LOGIC
.
.
.
684
TABLE
OF
CONTENTS
XXV
22.2.2.1
THE
ABDUCTION
INFERENCE
RULE
.
684
22.2.2.2
THE
ABDUCTION
PRINCIPLE
.
685
22.2.3
ALGORITHMIC
DESCRIPTION
OF
THE
ABDUCTIVE
VARIATIONAL
PRINCIPLE
.
686
22.2.3.1
THE
GENERATION
OF
THE
VARIATION
AND
OF
THE
"
NEARBY"
LOGIC
PROGRAM
.
687
22.2.3.2
APPLICATION
OF
THE
LEAST
ACTION
PRINCIPLE
TO
THE
VARIATIONAL
DYNAMIC
SEQUENCE
.
687
22.2.3.3
FIXING
THE
ENDING
POINT
OF
THE
VARIATIONAL
SYNTACTIC
PATH
.
688
22.2.3.4
APPLYING
THE
ABDUCTIVE
VARIATIONAL
PRINCIPLE
.
688
22.3
APPLICATION
OF
THE
ABDUCTIVE
VARIATIONAL
PRINCIPLE
.
689
22.3.1
GENERATING
THE
"
NEARBY
"
PROGRAM
P'
.
689
22.3.2
APPLICATION
OF
THE
LEAST
ACTION
PRINCIPLE
TO
THE
VARIATIONAL
DYNAMIC
SEQUENCE
.
691
22.3.3
APPLICATION
OF
THE
ABDUCTIVE
VARIATIONAL
PRINCIPLE
FOR
REASONING
ABOUT
ACTIONS
.
694
22.4
THE
MURDER
MYSTERY
PROBLEM
(TEMPORAL
EXPLANATION
PROBLEM)
.
694
22.4.1
OPERATIONAL
SEMANTICS
OF
THE
MURDER
MYSTERY
PROBLEM
.
.
695
22.4.2
LEAST
FIXPOINT
OF
THE
MURDER
MYSTERY
PROBLEM
(TEMPORAL
EXPLANATION)
.
696
22.4.3
APPLICATION
OF
THE
VARIATIONAL
PRINCIPLE
TO
THE
MURDER
MYSTERY
PROBLEM
.
697
22.4.4
GENERATION
OF
THE
"
NEARBY
"
PROGRAM
.
697
22.4.5
APPLICATION
OF
THE
LEAST
ACTION
PRINCIPLE
TO
THE
VARIATIONAL
DYNAMIC
SEQUENCE
.
699
22.4.6
FIXING
THE
ENDING
POINT
OF
THE
VARIATIONAL
LOGIC
SYSTEM
.
.
704
22.5
DYNAMICS
OF
LOGIC
SYSTEMS
AND
PSYCHOLOGICAL
PROCESSES
.
.
704
BIBLIOGRAPHY
.
707
INDEX
.
713 |
any_adam_object | 1 |
author | Nait Abdallah, Areski 1950- |
author_GND | (DE-588)1125149140 |
author_facet | Nait Abdallah, Areski 1950- |
author_role | aut |
author_sort | Nait Abdallah, Areski 1950- |
author_variant | a a n aa aan |
building | Verbundindex |
bvnumber | BV008865857 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.7 |
callnumber-search | QA76.7 |
callnumber-sort | QA 276.7 |
callnumber-subject | QA - Mathematics |
classification_rvk | ST 125 ST 130 |
classification_tum | DAT 773f DAT 540f |
ctrlnum | (OCoLC)29598273 (DE-599)BVBBV008865857 |
dewey-full | 006.3/3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/3 |
dewey-search | 006.3/3 |
dewey-sort | 16.3 13 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV008865857</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19950925</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940124s1995 gw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">940160978</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540565833</subfield><subfield code="9">3-540-56583-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387565833</subfield><subfield code="9">0-387-56583-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)29598273</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV008865857</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/3</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 125</subfield><subfield code="0">(DE-625)143586:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 130</subfield><subfield code="0">(DE-625)143588:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 773f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 540f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nait Abdallah, Areski</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1125149140</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The logic of partial information</subfield><subfield code="c">Areski Nait Abdallah</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin u.a.</subfield><subfield code="b">Springer</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXV, 715 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Monographs on theoretical computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithmes</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Automatische bewijsvoering</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Calcul propositionnel</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cognitive semantics</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Formele talen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inteligencia artificial (computacao)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kennisrepresentatie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Langages de programmation - Sémantique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logique symbolique et mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Logique symbolique et mathématique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Logisch programmeren</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Programmeertalen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Raisonnement</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">information partielle</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">logique 1er ordre</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">logique non monotone</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">logique propositionnelle partielle</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">raisonnement</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">système logique</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">théorie démonstration</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programming languages (Electronic computers)</subfield><subfield code="x">Semantics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Information</subfield><subfield code="0">(DE-588)4232570-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Logischer Schluss</subfield><subfield code="0">(DE-588)4139983-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Information</subfield><subfield code="0">(DE-588)4232570-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Partielle Information</subfield><subfield code="0">(DE-588)4232570-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Logischer Schluss</subfield><subfield code="0">(DE-588)4139983-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Partielle Information</subfield><subfield code="0">(DE-588)4232570-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005864263&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005864263</subfield></datafield></record></collection> |
id | DE-604.BV008865857 |
illustrated | Not Illustrated |
indexdate | 2024-08-18T00:45:17Z |
institution | BVB |
isbn | 3540565833 0387565833 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005864263 |
oclc_num | 29598273 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-29T DE-739 DE-706 DE-83 DE-188 |
owner_facet | DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-29T DE-739 DE-706 DE-83 DE-188 |
physical | XXV, 715 S. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer |
record_format | marc |
series2 | Monographs on theoretical computer science |
spelling | Nait Abdallah, Areski 1950- Verfasser (DE-588)1125149140 aut The logic of partial information Areski Nait Abdallah Berlin u.a. Springer 1995 XXV, 715 S. txt rdacontent n rdamedia nc rdacarrier Monographs on theoretical computer science Algorithmes Automatische bewijsvoering gtt Calcul propositionnel ram Cognitive semantics gtt Formele talen gtt Inteligencia artificial (computacao) larpcal Kennisrepresentatie gtt Langages de programmation - Sémantique Logique symbolique et mathématique Logique symbolique et mathématique ram Logisch programmeren gtt Programmeertalen gtt Raisonnement ram information partielle inriac logique 1er ordre inriac logique non monotone inriac logique propositionnelle partielle inriac raisonnement inriac système logique inriac théorie démonstration inriac Computer algorithms Logic, Symbolic and mathematical Programming languages (Electronic computers) Semantics Mathematische Logik (DE-588)4037951-6 gnd rswk-swf Partielle Information (DE-588)4232570-5 gnd rswk-swf Logischer Schluss (DE-588)4139983-3 gnd rswk-swf Partielle Information (DE-588)4232570-5 s Mathematische Logik (DE-588)4037951-6 s DE-604 Logischer Schluss (DE-588)4139983-3 s DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005864263&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nait Abdallah, Areski 1950- The logic of partial information Algorithmes Automatische bewijsvoering gtt Calcul propositionnel ram Cognitive semantics gtt Formele talen gtt Inteligencia artificial (computacao) larpcal Kennisrepresentatie gtt Langages de programmation - Sémantique Logique symbolique et mathématique Logique symbolique et mathématique ram Logisch programmeren gtt Programmeertalen gtt Raisonnement ram information partielle inriac logique 1er ordre inriac logique non monotone inriac logique propositionnelle partielle inriac raisonnement inriac système logique inriac théorie démonstration inriac Computer algorithms Logic, Symbolic and mathematical Programming languages (Electronic computers) Semantics Mathematische Logik (DE-588)4037951-6 gnd Partielle Information (DE-588)4232570-5 gnd Logischer Schluss (DE-588)4139983-3 gnd |
subject_GND | (DE-588)4037951-6 (DE-588)4232570-5 (DE-588)4139983-3 |
title | The logic of partial information |
title_auth | The logic of partial information |
title_exact_search | The logic of partial information |
title_full | The logic of partial information Areski Nait Abdallah |
title_fullStr | The logic of partial information Areski Nait Abdallah |
title_full_unstemmed | The logic of partial information Areski Nait Abdallah |
title_short | The logic of partial information |
title_sort | the logic of partial information |
topic | Algorithmes Automatische bewijsvoering gtt Calcul propositionnel ram Cognitive semantics gtt Formele talen gtt Inteligencia artificial (computacao) larpcal Kennisrepresentatie gtt Langages de programmation - Sémantique Logique symbolique et mathématique Logique symbolique et mathématique ram Logisch programmeren gtt Programmeertalen gtt Raisonnement ram information partielle inriac logique 1er ordre inriac logique non monotone inriac logique propositionnelle partielle inriac raisonnement inriac système logique inriac théorie démonstration inriac Computer algorithms Logic, Symbolic and mathematical Programming languages (Electronic computers) Semantics Mathematische Logik (DE-588)4037951-6 gnd Partielle Information (DE-588)4232570-5 gnd Logischer Schluss (DE-588)4139983-3 gnd |
topic_facet | Algorithmes Automatische bewijsvoering Calcul propositionnel Cognitive semantics Formele talen Inteligencia artificial (computacao) Kennisrepresentatie Langages de programmation - Sémantique Logique symbolique et mathématique Logisch programmeren Programmeertalen Raisonnement information partielle logique 1er ordre logique non monotone logique propositionnelle partielle raisonnement système logique théorie démonstration Computer algorithms Logic, Symbolic and mathematical Programming languages (Electronic computers) Semantics Mathematische Logik Partielle Information Logischer Schluss |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005864263&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT naitabdallahareski thelogicofpartialinformation |