Estimation and inference in bivariate and multivariate ordinal probit models:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Stockholm
Almqvist & Wiksell
1993
|
Schriftenreihe: | Uppsala Universitet: Acta Universitatis Upsaliensis / Studia Statistica Upsaliensia
1 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Zugl.: Uppsala, Univ., Diss., 1993 |
Beschreibung: | 138 S. |
ISBN: | 9155431623 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV008286159 | ||
003 | DE-604 | ||
005 | 20081121 | ||
007 | t | ||
008 | 931022s1993 m||| 00||| eng d | ||
020 | |a 9155431623 |9 91-554-3162-3 | ||
035 | |a (OCoLC)31207790 | ||
035 | |a (DE-599)BVBBV008286159 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-19 |a DE-29 |a DE-384 |a DE-11 | ||
050 | 0 | |a QA273.6 | |
082 | 0 | |a 519.505 |b A118, U58x, v. 1 | |
084 | |a QH 233 |0 (DE-625)141548: |2 rvk | ||
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
100 | 1 | |a Bermann, Georgina |e Verfasser |4 aut | |
245 | 1 | 0 | |a Estimation and inference in bivariate and multivariate ordinal probit models |c Georgina Bermann |
264 | 1 | |a Stockholm |b Almqvist & Wiksell |c 1993 | |
300 | |a 138 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Uppsala Universitet: Acta Universitatis Upsaliensis / Studia Statistica Upsaliensia |v 1 | |
500 | |a Zugl.: Uppsala, Univ., Diss., 1993 | ||
650 | 7 | |a Statistiek |2 gtt | |
650 | 4 | |a Statistik | |
650 | 4 | |a Parameter estimation | |
650 | 4 | |a Probits | |
650 | 0 | 7 | |a Bivariate Verteilung |0 (DE-588)4145782-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistische Schlussweise |0 (DE-588)4182963-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schätzung |0 (DE-588)4193791-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ordinale Datenanalyse |0 (DE-588)4122304-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Probit-Modell |0 (DE-588)4225469-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Multivariate Normalverteilung |0 (DE-588)4227589-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Ordinale Datenanalyse |0 (DE-588)4122304-4 |D s |
689 | 0 | 1 | |a Probit-Modell |0 (DE-588)4225469-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Bivariate Verteilung |0 (DE-588)4145782-1 |D s |
689 | 1 | 1 | |a Probit-Modell |0 (DE-588)4225469-3 |D s |
689 | 1 | 2 | |a Schätzung |0 (DE-588)4193791-0 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Probit-Modell |0 (DE-588)4225469-3 |D s |
689 | 2 | 1 | |a Bivariate Verteilung |0 (DE-588)4145782-1 |D s |
689 | 2 | 2 | |a Statistische Schlussweise |0 (DE-588)4182963-3 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Multivariate Normalverteilung |0 (DE-588)4227589-1 |D s |
689 | 3 | 1 | |a Probit-Modell |0 (DE-588)4225469-3 |D s |
689 | 3 | 2 | |a Statistische Schlussweise |0 (DE-588)4182963-3 |D s |
689 | 3 | |5 DE-604 | |
689 | 4 | 0 | |a Probit-Modell |0 (DE-588)4225469-3 |D s |
689 | 4 | 1 | |a Multivariate Normalverteilung |0 (DE-588)4227589-1 |D s |
689 | 4 | 2 | |a Schätzung |0 (DE-588)4193791-0 |D s |
689 | 4 | |5 DE-604 | |
810 | 2 | |a Studia Statistica Upsaliensia |t Uppsala Universitet: Acta Universitatis Upsaliensis |v 1 |w (DE-604)BV008286146 |9 1 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005475560&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-005475560 |
Datensatz im Suchindex
_version_ | 1804122684422881280 |
---|---|
adam_text | Contents
Acknowledgements 9
Introduction and Summary 11
1 Univariate Ordinal Probit 15
1.1 Introduction 15
1.2 The Ordinal Probit Model 16
1.2.1 ML Estimation and Orthogonality Conditions 17
1.2.2 Comparison of estimators 18
1.2.3 ML Estimation: General Considerations 19
1.3 Monte Carlo Study 20
1.3.1 Estimators 20
1.3.2 Design of the Monte Carlo Study 20
1.3.3 Explanatory variables 22
1.3.4 Computation of the Monte Carlo Study 22
1.4 Results 23
1.5 Conclusions 25
2 Bivariate Ordinal Probit 35
2.1 Introduction 35
2.2 The Bivariate Probit Model 35
2.3 The Estimators 36
2.4 Consistency and Asymptotic Distribution 38
2.5 Constrained Optimization 41
2.6 Simulation Study 44
2.6.1 Design of the Monte Carlo Study 44
2.6.2 Details of the Simulations 45
2.6.3 Regressors in the Simulations 45
2.7 Estimation and Existence 47
2.7.1 Cases of Divergence of the Likelihood 47
2.7.2 Results: Divergence and Empirical Distribution 51
2.8 Results of the Monte Carlo Study 53
2.9 Conclusions 54
6 Contents
3 Asymptotic Covariance Matrix 77
3.1 Multivariate Ordinal Probit Model 77
3.2 Thresholds and Regression Coefficients 78
3.3 Estimation of E 82
3.4 Covariance of the Bivariate Probit Estimator 85
3.5 Other Approximations 86
3.6 Covariances of the Correlation Coefficients 90
3.7 Simulation Experiment 91
3.8 Results 92
3.9 Conclusions 94
4 Inference 105
4.1 Introduction 105
4.2 Lagrange Multiplier Tests 106
4.3 Test of Omitted Regressors 108
4.4 Test of Univariate Normality 108
4.5 Test of Heteroscedasticity Ill
4.6 Deviance 112
4.7 Conclusions 113
5 A Model of Labor Supply Choices 117
5.1 Introduction 117
5.2 Methodological Considerations 117
5.3 A Model for the Transition Probabilities 118
5.4 Effect of Initial Conditions 120
5.5 Structure of State Transitions 121
5.6 Regression Analysis 122
5.7 Discussion 125
A Consistency and asymptotic normality 137
List of Tables
1.1 Means:Regression Coefficients 29
1.2 Confidence Degree and Number of Significances:RC (1,0,2) .... 30
1.3 Bias [columns represent estimators] 31
1.4 Bias 32
1.5 Mean Square Error: [columns represent estimators] 33
1.6 Mean Square Error 34
2.1 Study 1 Percentage of non convergent cases 53
2.2 Study 2 Percentage of non convergent cases 53
2.3 study 1: p = 0.2 and 2 x 2 Categories 58
2.4 study 1: p = 0.2 and 3x3 Categories 59
2.5 study 1: p — 0.2and 5x5 Categories 60
2.6 study 1: p = 0.8 and 2x2 Categories 61
2.7 study 1: p = 0.8 and 3x3 Categories 62
2.8 study 1: p = 0.8 and 5x5 Categories 63
2.9 study 2: p — 0.2 and 5 Continuous Covariates 64
2.10 STUDY 2: p = 0.8 and 5 Continuous Covariates 65
2.11 study 2: p = 0.2 and 5 Mixed Covariates 66
2.12 study 2: p = 0.8 and 5 Mixed Covariates 67
3.1 2x2 Categories p = 0.2 96
3.2 2x2 Categories / = 0.8 97
3.3 2x2 Categories 98
3.4 3x3 Categories p = Q.2 99
3.5 3x3 Categories p = 0.8 100
3.6 3x3 Categories 101
3.7 5x5 Categories p = 0.2 102
3.8 5x5 Categories p = 0.8 103
3.9 5x5 Categories 104
5.1 TWO STEP LABOR MARKET TRANSITION PATTERNS 128
5.2 THREE STEP LABOR MARKET TRANSITION PATTERNS 129
5.3 All Ages: No Previous States [t statistics in parentheses] . . . 130
8 List of Tables
5.4 All Ages: Previous States [t statistics in parentheses] 131
5.5 Under 45: Previous States [t statistics in parentheses] 132
5.6 Over 45: Previous States [t statistics in parentheses] 133
5.7 PATTERNS OF LABOR MARKET INVOLVEMENT OVER 4 PERIODS . . 134
5.8 STEPPING STONE PATTERNS 134
5.9 CHANGES IN FAMILY SITUATION AND LABOR MARKET INVOLVEMENT135
|
any_adam_object | 1 |
author | Bermann, Georgina |
author_facet | Bermann, Georgina |
author_role | aut |
author_sort | Bermann, Georgina |
author_variant | g b gb |
building | Verbundindex |
bvnumber | BV008286159 |
callnumber-first | Q - Science |
callnumber-label | QA273 |
callnumber-raw | QA273.6 |
callnumber-search | QA273.6 |
callnumber-sort | QA 3273.6 |
callnumber-subject | QA - Mathematics |
classification_rvk | QH 233 SK 830 |
ctrlnum | (OCoLC)31207790 (DE-599)BVBBV008286159 |
dewey-full | 519.505 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.505 |
dewey-search | 519.505 |
dewey-sort | 3519.505 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02969nam a2200709 cb4500</leader><controlfield tag="001">BV008286159</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081121 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">931022s1993 m||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9155431623</subfield><subfield code="9">91-554-3162-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)31207790</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV008286159</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA273.6</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.505</subfield><subfield code="b">A118, U58x, v. 1</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bermann, Georgina</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimation and inference in bivariate and multivariate ordinal probit models</subfield><subfield code="c">Georgina Bermann</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Stockholm</subfield><subfield code="b">Almqvist & Wiksell</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">138 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Uppsala Universitet: Acta Universitatis Upsaliensis / Studia Statistica Upsaliensia</subfield><subfield code="v">1</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Zugl.: Uppsala, Univ., Diss., 1993</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistiek</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parameter estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probits</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bivariate Verteilung</subfield><subfield code="0">(DE-588)4145782-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Schlussweise</subfield><subfield code="0">(DE-588)4182963-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schätzung</subfield><subfield code="0">(DE-588)4193791-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ordinale Datenanalyse</subfield><subfield code="0">(DE-588)4122304-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Probit-Modell</subfield><subfield code="0">(DE-588)4225469-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multivariate Normalverteilung</subfield><subfield code="0">(DE-588)4227589-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ordinale Datenanalyse</subfield><subfield code="0">(DE-588)4122304-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Probit-Modell</subfield><subfield code="0">(DE-588)4225469-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Bivariate Verteilung</subfield><subfield code="0">(DE-588)4145782-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Probit-Modell</subfield><subfield code="0">(DE-588)4225469-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Schätzung</subfield><subfield code="0">(DE-588)4193791-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Probit-Modell</subfield><subfield code="0">(DE-588)4225469-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Bivariate Verteilung</subfield><subfield code="0">(DE-588)4145782-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Statistische Schlussweise</subfield><subfield code="0">(DE-588)4182963-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Multivariate Normalverteilung</subfield><subfield code="0">(DE-588)4227589-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Probit-Modell</subfield><subfield code="0">(DE-588)4225469-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="2"><subfield code="a">Statistische Schlussweise</subfield><subfield code="0">(DE-588)4182963-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Probit-Modell</subfield><subfield code="0">(DE-588)4225469-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Multivariate Normalverteilung</subfield><subfield code="0">(DE-588)4227589-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="2"><subfield code="a">Schätzung</subfield><subfield code="0">(DE-588)4193791-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Studia Statistica Upsaliensia</subfield><subfield code="t">Uppsala Universitet: Acta Universitatis Upsaliensis</subfield><subfield code="v">1</subfield><subfield code="w">(DE-604)BV008286146</subfield><subfield code="9">1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005475560&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005475560</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV008286159 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:17:47Z |
institution | BVB |
isbn | 9155431623 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005475560 |
oclc_num | 31207790 |
open_access_boolean | |
owner | DE-12 DE-19 DE-BY-UBM DE-29 DE-384 DE-11 |
owner_facet | DE-12 DE-19 DE-BY-UBM DE-29 DE-384 DE-11 |
physical | 138 S. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Almqvist & Wiksell |
record_format | marc |
series2 | Uppsala Universitet: Acta Universitatis Upsaliensis / Studia Statistica Upsaliensia |
spelling | Bermann, Georgina Verfasser aut Estimation and inference in bivariate and multivariate ordinal probit models Georgina Bermann Stockholm Almqvist & Wiksell 1993 138 S. txt rdacontent n rdamedia nc rdacarrier Uppsala Universitet: Acta Universitatis Upsaliensis / Studia Statistica Upsaliensia 1 Zugl.: Uppsala, Univ., Diss., 1993 Statistiek gtt Statistik Parameter estimation Probits Bivariate Verteilung (DE-588)4145782-1 gnd rswk-swf Statistische Schlussweise (DE-588)4182963-3 gnd rswk-swf Schätzung (DE-588)4193791-0 gnd rswk-swf Ordinale Datenanalyse (DE-588)4122304-4 gnd rswk-swf Probit-Modell (DE-588)4225469-3 gnd rswk-swf Multivariate Normalverteilung (DE-588)4227589-1 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Ordinale Datenanalyse (DE-588)4122304-4 s Probit-Modell (DE-588)4225469-3 s DE-604 Bivariate Verteilung (DE-588)4145782-1 s Schätzung (DE-588)4193791-0 s Statistische Schlussweise (DE-588)4182963-3 s Multivariate Normalverteilung (DE-588)4227589-1 s Studia Statistica Upsaliensia Uppsala Universitet: Acta Universitatis Upsaliensis 1 (DE-604)BV008286146 1 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005475560&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bermann, Georgina Estimation and inference in bivariate and multivariate ordinal probit models Statistiek gtt Statistik Parameter estimation Probits Bivariate Verteilung (DE-588)4145782-1 gnd Statistische Schlussweise (DE-588)4182963-3 gnd Schätzung (DE-588)4193791-0 gnd Ordinale Datenanalyse (DE-588)4122304-4 gnd Probit-Modell (DE-588)4225469-3 gnd Multivariate Normalverteilung (DE-588)4227589-1 gnd |
subject_GND | (DE-588)4145782-1 (DE-588)4182963-3 (DE-588)4193791-0 (DE-588)4122304-4 (DE-588)4225469-3 (DE-588)4227589-1 (DE-588)4113937-9 |
title | Estimation and inference in bivariate and multivariate ordinal probit models |
title_auth | Estimation and inference in bivariate and multivariate ordinal probit models |
title_exact_search | Estimation and inference in bivariate and multivariate ordinal probit models |
title_full | Estimation and inference in bivariate and multivariate ordinal probit models Georgina Bermann |
title_fullStr | Estimation and inference in bivariate and multivariate ordinal probit models Georgina Bermann |
title_full_unstemmed | Estimation and inference in bivariate and multivariate ordinal probit models Georgina Bermann |
title_short | Estimation and inference in bivariate and multivariate ordinal probit models |
title_sort | estimation and inference in bivariate and multivariate ordinal probit models |
topic | Statistiek gtt Statistik Parameter estimation Probits Bivariate Verteilung (DE-588)4145782-1 gnd Statistische Schlussweise (DE-588)4182963-3 gnd Schätzung (DE-588)4193791-0 gnd Ordinale Datenanalyse (DE-588)4122304-4 gnd Probit-Modell (DE-588)4225469-3 gnd Multivariate Normalverteilung (DE-588)4227589-1 gnd |
topic_facet | Statistiek Statistik Parameter estimation Probits Bivariate Verteilung Statistische Schlussweise Schätzung Ordinale Datenanalyse Probit-Modell Multivariate Normalverteilung Hochschulschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005475560&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008286146 |
work_keys_str_mv | AT bermanngeorgina estimationandinferenceinbivariateandmultivariateordinalprobitmodels |